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1 Regular Languages

1.1 Finite Automata

Finite automata, or finite-state machines, form the simplest computational model. Our everyday computers are a prototyp-
ical example that shows just how powerful and versatile these machines can be.

Intuitively, a finite automaton is defined by a diagram like the following example.

𝑞1 𝑞2 𝑞3
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Figure 1: A finite automaton𝑀1

A finite automaton first defines a finite, non-empty alphabet Σ, which will be the input to the state machine at each time.
Each circle, or node, represents one of finitely many states, which are 𝑞1, 𝑞2, 𝑞3 in the example. Exactly one arrow points
from nothing to a state, which defines the start state. Each state has |Σ| outgoing arrows, where each character of Σ is
assigned to exactly one arrow. Upon each input, the machine transitions to the next state following the arrows. At the end
of the input, the machine stops at a state which may or may not be double-circled. If so, the machine is said to accept the
input sequence of characters; otherwise, the machine is said to reject the input. The states that are doubly circled are called
the accept states.

In the example above, Σ = {0, 1}. 𝑀1 would reject 0, accept 1, reject 10, accept 1101, and so on. In fact, one can note that𝑀1
accepts all binary strings containing at least one 1 that have an even number of 0’s after the last 1.

This idea is formalized in set-theory notation as follows.

Definition 1.1. A finite automaton𝑀 is a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) where

• 𝑄 is the finite set of states;

• Σ is the finite, non-empty alphabet set;

• 𝛿 : 𝑄 × Σ→ 𝑄 is the transition function;

• 𝑞0 ∈ 𝑄 is the initial state;

• 𝐹 ⊆ 𝑄 is the set of accept states.

The input is a sequence or string from the alphabet. We define this more specifically.

Definition 1.2. Suppose Σ is a finite, non-empty alphabet. A string 𝑠 = (𝑠1, · · · , 𝑠𝑛) for 𝑛 ∈ Z≥0 is a finite sequence of
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elements in Σ, denoted simply as 𝑠1 · · · 𝑠𝑛 , where 𝑠1, · · · , 𝑠𝑛 ∈ Σ. The empty string is denoted as 𝜖 and the collection of all
strings over Σ is denoted as Σ∗. We denote string concatenation as 𝑠1𝑠2, where 𝑠1, 𝑠2 ∈ Σ∗. A language over Σ is a subset of
the strings Σ∗. The length of a string is denoted as | · | : Σ∗ → Z≥0.

We now define the computation of a finite automaton using the formal definitions, which is the description of the sequence
of states we obtain by passing through each character of the input string.

Definition 1.3. Suppose𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) is a finite automaton and𝑤 = 𝑤1 · · ·𝑤𝑛 ∈ Σ∗ is the input string (|𝑤 | = 𝑛). The
finite automaton carries out the following computation:

• Let 𝑟0 ← 𝑞0 be the initial state;

• For each 𝑖 = 1, · · · , 𝑛, let 𝑟𝑖 ← 𝛿 (𝑟𝑖−1,𝑤𝑖 ).

If the final state is accepted, that is, 𝑟𝑛 ∈ 𝐹 , then𝑀 is said to accept𝑤 . Otherwise,𝑀 is said to reject𝑤 . The language of𝑀 ,
denoted as 𝐿(𝑀) ⊆ Σ∗, is the collection of all strings that𝑀 accepts. 𝑀 is said to recognize the language 𝐿(𝑀).

The theoretical significance lies in the class of all languages that finite automata can recognize, the regular languages. They
correspond to regular expressions, which we frequently use in day-to-day programming.

Definition 1.4. A language 𝐴 over a finite, non-empty alphabet Σ is said to be regular if there exists finite automaton that
recognizes 𝐴. Two machines recognizing the same language are said to be equivalent.

For example, the language of binary strings that represent even integers is a regular language. To show this, we construct
an explicit instance of a finite automaton that recognizes this language.

𝑞odd 𝑞even

1
0

0

1

Figure 2: A finite automaton𝑀2 that recognizes even binary numbers.

We start at 𝑞odd to avoid accepting the empty string, which is technically not a number, much less even. Regardless of the
previous state, 𝑀 would go to state 𝑞odd if the input is 1 and go to 𝑞even if the input is 0. In this way, only the parity of the
final input character matters, which is exactly the math we know.

A slightly more complicated example is to recognize the language of binary strings that contain 001 as a substring. The
starting point is that the states 𝑞∅, 𝑞0, 𝑞00, 𝑞001 should keep track of the last couple characters. This motivates the following
design.

𝑞∅ 𝑞0 𝑞00 𝑞001
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Figure 3: A finite automaton𝑀3 that recognizes binary strings with substring 001.

We now develop some introductory theory on regular languages. We define some sensible operations first, and show that
the class of regular language is closed under these regular operations.

Definition 1.5. Suppose 𝐴 and 𝐴′ are languages over a finite, non-empty alphabet Σ. The regular operations are

• Union. The language 𝐴 ∪𝐴′ over Σ;
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Figure 4: The finite automaton𝑀2 that recognizes even
binary numbers.
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Figure 5: A finite automaton 𝑀4 that recognizes binary
string starting with a 1.

• Concatenation. The language 𝐴 ◦𝐴′ B {𝑤𝑤 ′ | 𝑤 ∈ 𝐴,𝑤 ′ ∈ 𝐴′} over Σ;

• Kleene star. The language 𝐴∗ =
⋃∞

𝑛=0{𝑤1 · · ·𝑤𝑛 | 𝑤1, · · · ,𝑤𝑛 ∈ 𝐴} over Σ.

Note that concatenation is associative, which allows us to write expressions like 𝐴 ◦ 𝐵 ◦𝐶 without ambiguity because the
order of the ◦’s we evaluate does not affect the result. This is also obvious for ∪.

Here are some examples of the regular operations.:

• Union. If 𝐴 = {1, 01, 001, 0001, · · ·} and 𝐴′ = {101}, then 𝐴 ∪𝐴′ = {101, 1, 01, 001, 0001, · · ·};

• Concatenation. With 𝐴 = {1, 01, 001, 0001, · · ·} and 𝐴′ = {101, 111}, 𝐴 ◦ 𝐴′ = {1101, 1111, 01101, 01111, 001101,
001111, · · · };

• Kleene star. With 𝐴 = {0, 01}, 𝐴∗ = {𝜖, 0, 01, 00, 001, 010, 0101, · · · }.

We already have the machinery to address the closure of regular language under unions. We will assume the languages
share the same alphabet, which is not as restrictive as it may first appear to be. Two languages 𝐴1 ∈ Σ∗1 and 𝐴2 ∈ Σ∗2
can be extended to share the same alphabet by considering Σ B Σ1 ∪ Σ2 such that 𝐴1 ∈ Σ∗1 ⊆ Σ∗ and 𝐴2 ∈ Σ∗2 ⊆ Σ∗.
Technically, we might need to create an additional “dead state” to represent whenever we receive as input from the unused
part of the alphabet. Hereafter, we will assume without loss of generality that all languages in discussion are over a common
alphabet.

We now show our first closure results: regular languages are closed under unions. That is, given two languages𝐴1 = 𝐿(𝑀1)
and 𝐴2 = 𝐿(𝑀2), we need to construct another 𝑀 so that 𝐿(𝑀) = 𝐴1 ∪ 𝐴2. We can achieve this by running the two in
parallel: since the sequences of states produced by𝑀1 and𝑀2 will have the same length (of |𝑤 | + 1) given a common input
𝑤 ∈ Σ∗, we can “zip” their states together to keep track of both simultaneously. This is achieved by the Cartesian product,
which we detail as follows.

Proposition 1.6. Suppose 𝐴1 and 𝐴2 are regular languages over a finite, non-empty alphabet Σ. Then, the union 𝐴1 ∪ 𝐴2
is also a regular language.

Proof. Suppose finite automata𝑀1 = (𝑄1, Σ, 𝛿1, 𝑞1, 𝐹1) recognizes𝐴1 and𝑀2 = (𝑄2, Σ, 𝛿2, 𝑞2, 𝐹2) recognizes𝐴2. We construct
another finite automaton𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) that recognizes 𝐴1 ∪𝐴2. Let 𝑄 = 𝑄1 ×𝑄2, 𝑞0 = (𝑞1, 𝑞2), and 𝐹 = {(𝑟1, 𝑟2) ∈ 𝑄 |
𝑟1 ∈ 𝐹1 ∨ 𝑟2 ∈ 𝐹2}. Further, define

𝛿 ((𝑟1, 𝑟2), 𝑎) = (𝛿1 (𝑟1, 𝑎), 𝛿2 (𝑟2, 𝑎)) .

Note that the two components of the state pair are independent or constant with respect to each other. If𝑤 ∈ 𝐴1, then the
final state 𝑟𝑛 = (𝑟1, 𝑟2) must be in 𝐹 since 𝑟1 ∈ 𝐹1. Similarly, if𝑤 ∈ 𝐴2, then 𝑟𝑛 ∈ 𝐹 as well since 𝑟2 ∈ 𝐹2. If𝑤 ∉ 𝐴1 ∪𝐴2, then
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Figure 6: The finite automaton𝑀5 that recognizes even binary numbers as well as binary strings starting with 1.

neither 𝑟1 ∈ 𝐹1 nor 𝑟2 ∈ 𝐹2, and hence 𝑟𝑛 ∉ 𝐹 . □

Note that we combine𝑀2 and𝑀4 to produce𝑀5 such that 𝐿(𝑀5) = 𝐿(𝑀2) ∪ 𝐿(𝑀4).

Now, just by changing how we construct the new accept states 𝐹 , we can easily prove that regular languages are also closed
under intersections. While it’s not called a regular operation, this is still quite a useful fact to know.

Proposition 1.7. Suppose 𝐴1 and 𝐴2 are regular languages over a finite, non-empty alphabet Σ. Then, the intersection
𝐴1 ∩𝐴2 is also a regular language.

Proof. Suppose finite automata𝑀1 = (𝑄1, Σ, 𝛿1, 𝑞1, 𝐹1) recognizes𝐴1 and𝑀2 = (𝑄2, Σ, 𝛿2, 𝑞2, 𝐹2) recognizes𝐴2. We construct
another finite automaton𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) that recognizes𝐴1∩𝐴2. Let𝑄 = 𝑄1×𝑄2, 𝑞0 = (𝑞1, 𝑞2), and 𝐹 = 𝐹1×𝐹2. Further,
define

𝛿 ((𝑟1, 𝑟2), 𝑎) = (𝛿1 (𝑟1, 𝑎), 𝛿2 (𝑟2, 𝑎)) .

It is obvious from construction that𝑀 recognizes 𝐴1 ∩𝐴2. □

We also have the machinery to think about complements.

Definition 1.8. Suppose 𝐴 is a language over Σ. The complement of 𝐴, denoted as 𝐴, is defined as the strings not in 𝐴,
namely Σ∗\𝐴.

How do we achieve this? We can simply “toggle” the accept states to the complement in 𝑄 . All accept states before are
now reject states and all reject states before are now accept states. Clearly, this construction “toggles” the strings we
recognize.

Proposition 1.9. Suppose 𝐴 is a regular language over a finite, non-empty alphabet Σ. Then, the complement 𝐴 is also a
regular language.

Proof. Suppose 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) recognizes 𝐴. Let 𝑀 ′ = (𝑄, Σ, 𝛿, 𝑞0, 𝑄\𝐹 ), and consider an input string 𝑤 = 𝑤1 · · ·𝑤𝑛 ∈
Σ∗, where 𝑛 = |𝑤 |. By construction,𝑀 and𝑀 ′ follow the same computational sequence, yielding the same final state 𝑟𝑛 ∈ 𝑄 .
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Then,

𝑀 accepts𝑤 ⇐⇒ 𝑟𝑛 ∈ 𝐹
⇐⇒ 𝑟𝑛 ∉ 𝑄\𝐹
⇐⇒ 𝑀 ′ rejects𝑤 .

Because𝑤 is chosen arbitrarily, the above equivalence establishes that𝑀 ′ recognizes 𝐴. □

1.2 Non-Determinism

Now, let’s consider the operation of string reversal.

Definition 1.10. Let𝑤 = 𝑤1 · · ·𝑤𝑛 ∈ Σ∗ be a string of length 𝑛. The reversal of𝑤 , denoted as𝑤𝑅 , is defined as𝑤𝑛 · · ·𝑤1 ∈
Σ∗. Given a language 𝐴 ⊆ Σ∗, the reversal of 𝐴 is defined as 𝐴𝑅 B {𝑤𝑅 | 𝑤 ∈ 𝐴}.

For example, (00101)𝑅 = 10100, and {𝑤 ∈ {0, 1}∗ | 𝑤 starts with a 1}𝑅 = {𝑤 ∈ {0, 1}∗ | 𝑤 ends with a 1}.

It shouldn’t be too surprising that strings can be recognized backwards. How would we go about proving this? To construct
a concrete DFA, we need to reverse the state sequence 𝑟0 (= 𝑞0), · · · , 𝑟𝑛 ∈ 𝑄 . So we swap the initial and accept states and
reverse all the arrows.

𝑞odd 𝑞even

1
0

0

1

Figure 7: The finite automaton𝑀2 that recognizes even
binary numbers.

𝑞odd 𝑞even

1
1

0

0

Figure 8: The “finite automaton”𝑀𝑅
2 that recognizes bi-

nary strings starting with 1.

In this way, we can back-trace this sequence from the new start state to a new accept state—except we can’t. First, we
can have multiple accept states, but the new initial state has to be unique. What’s more, the reversed arrows are not even
necessarily functions𝑄×Σ→ 𝑄 anymore. Consider𝑀2 that recognizes even integers. In𝑀𝑅

2 , we have two outgoing arrows
labeled with 1 from 𝑞odd! Even worse, some arrows are missing. What happens when we have input 0 at state 𝑞odd? All
these issues mean that the reversal cannot be a DFA. So what now? Well, all we need to accept a string is to have some path
along arrow transitions. If not, we know that the original string cannot possibly be accepted by the original DFA.

For 𝐿(𝑀1) ◦ 𝐿(𝑀2), we could try to chain the accept states of 𝑀1 with the initial state of 𝑀2 by adding arrows, but this is a
many-to-one relationship, and the transition should be optional and can happen without any input: we may move from an
accept state in𝑀1 to another non-accept state or move to the next machine. The existence of some path along arrows of the
machine should define acceptance.

We begin our introduction to nondeterminism, which is an ideamuchmore general in the theory of computation, by defining
non-deterministic finite automata (NFA) that addresses the necessities above.

We start with an elementary example.

This example showcases the advantages of an NFA. 𝑁1 recognizes the union of {0} and {𝑤 | 𝑤 contains 001}. By using 𝜖
arrows, we allow for transitions to either “actual” start states to recognize either possibilities. By having two possibilities for
𝑞2∅ upon input 0, the state can choose to loop over itself arbitrarily many times as needed since we require only some path
to reach an accept state. By not defining a next state for 𝑞10 upon 0, the existence of any such path with the input sequence
is impossible.

How, then, do we keep track of the multiple possibilities for paths? When more than one next state is specified, we “fork”
the current path along the arrows into different branches that act simultaneously to subsequent input. If at some input, the
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next state for a branch is undefined, then this branch dies and is not accepted. If we have moved to a state where a next
state arrow exists with 𝜖 , then we add another branch to the current path going to that state before the next input. If any
branch is accepted at the end of the input, the NFA accepts the input. Otherwise, the NFA rejects the input. If branches
are led to the same next state upon some input, the branches merge to one for subsequent calculation. To keep track of the
calculation, which requires considering all possibilities simultaneously, we use a set to describe all current states that can
be reached along some path of arrows up to the current input.

Let’s consider the input 0010. Note that initially, we have {𝑞0, 𝑞1∅, 𝑞2∅} which includes 𝑞0, not utilizing the optional 𝜖 arrows.
Of course, this branch dies upon any input, so in effect we have two initial states 𝑞1∅ and 𝑞2∅.

• The start state is 𝑞0, and we have optional 𝜖 arrows pointing two other states. We initially have {𝑞0, 𝑞1∅, 𝑞2∅};

• Upon input 0, 𝑞0 dies, 𝑞1∅ moves to 𝑞10, and 𝑞2∅ moves to itself 𝑞2∅ and 𝑞20. We now have {𝑞10, 𝑞2∅, 𝑞20};

• Upon input 0, 𝑞10 dies, 𝑞2∅ moves to 𝑞2∅ and 𝑞20, and 𝑞20 moves to 𝑞200. We now have {𝑞2∅, 𝑞20, 𝑞200};

• Upon input 1, 𝑞2∅ moves to 𝑞2∅, 𝑞20 dies, and 𝑞200 moves to 𝑞2001. We now have {𝑞2∅, 𝑞2001};

• Upon input 0, 𝑞2∅ moves to 𝑞2∅ and 𝑞20, and 𝑞2001 moves to 𝑞2001. We eventually have {𝑞2∅, 𝑞20, 𝑞2001}.

Because an accept state 𝑞2001 is in the eventual set of states, we conclude that 𝑁1 accepts 0010 as expected. Indeed, the
accepted branch ends at the branch describing the strings containing 001. Note that the branching-out allows us to match
0 or more characters at the beginning and the end of a string by additional self-loops with the entire alphabet.

We now formalize NFAs using the set-theoretic notation. We first introduce a new notation related to the 𝜖 arrows.

Definition 1.11. Suppose Σ is a finite, non-empty alphabet (which we hereafter assume does not contain 𝜖). Let Σ𝜖 denote
Σ ∪ {𝜖}, the alphabet with the empty 𝜖 symbol included.

The only modifications to DFA’s formal definition are that we now use the alphabet Σ𝜖 and track instead sets of states. The
absence of arrows from state 𝑞 ∈ 𝑄 upon input 𝑎 is interpreted as 𝛿 (𝑞, 𝑎) B ∅.

Definition 1.12. A non-deterministic finite automaton 𝑁 is a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) where

• 𝑄 is the finite set of states;

• Σ is the finite, non-empty alphabet set;

• 𝛿 : 𝑄 × Σ𝜖 → P (𝑄) is the transition function;

• 𝑞0 ∈ 𝑄 is the initial state;

• 𝐹 ⊆ 𝑄 is the set of accept states.

Importantly, 𝛿 : 𝑄 × Σ𝜖 → P (𝑄) maps each state (branch) and an input, possibly 𝜖 , to a collection of next states, possibly
empty. We now allow 𝛿 to take as input any string in Σ∗ with 𝜖’s inserted anywhere in the string to achieve the effect of 𝜖
arrows. This is formalized as follows.

𝑞0

𝑞1∅ 𝑞10

𝑞2∅ 𝑞20 𝑞200 𝑞2001

𝜖

𝜖

0

0,1

0 0 1

0,1

Figure 9: A non-deterministic finite automaton 𝑁1.
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Definition 1.13. Suppose 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) is a non-deterministic finite automaton and 𝑤 = 𝑤1 · · ·𝑤𝑛 ∈ Σ∗ is the input
string. Then, 𝑁 is said to accept 𝑤 if 𝑤 can be written as a length-𝑚 string 𝑤 = 𝑦1 · · ·𝑦𝑚 (𝑚 ≥ 𝑛), with 𝑦𝑖 ∈ Σ𝜖 for
𝑖 ∈ {1, · · · ,𝑚}, such that there exists a sequence of states 𝑟0, · · · , 𝑟𝑚 ∈ 𝑄 satisfying

• 𝑟0 = 𝑞0;

• 𝑟𝑖 ∈ 𝛿 (𝑟𝑖−1, 𝑦𝑖 ) for each 𝑖 = 1, · · · ,𝑚;

• 𝑟𝑚 ∈ 𝐹 .

Otherwise, 𝑁 is said to reject 𝑤 . The collection of all input strings accepted by 𝑁 is defined as the language of 𝑁 , denoted
as 𝐿(𝑁 ) ⊆ Σ∗.

Note the different formulation for computing an NFA. As noted before, NFAs require only the existence of some sequence
of states in each set of current states, instead of computing the sequence of states for DFAs, where the transition function
allows a path of arrows through these states. If a branch meets an undefined next state by 𝛿 upon an input character, then
there wouldn’t be a corresponding sequence of length𝑚 because any sequence starting with this branch up to the current
input will encounter an empty set for 𝛿 (𝑟𝑖−1, 𝑦𝑖 ), making it impossible to choose any 𝑟𝑖 . Further, the formulation means
𝑤 = 𝑦1 · · ·𝑦𝑚 is written as an expanded string with (optional) 𝜖’s added wherever we need. The existence of such 𝑦𝑖 ’s mean
we can choose whether or not to use any 𝜖 arrows as necessary to reach an accept state.

A remarkable fact is that DFAs and NFAs are equivalent in the sense that they recognize the same class of languages. Clearly,
a DFA is a NFA by using no 𝜖 arrows and making the new 𝛿 ′ : 𝑄 ×Σ𝜖 → P (𝑄) by 𝛿 ′ (𝑟, 𝑎) = {𝛿 (𝑟, 𝑎)} to force a unique path.
But it is not at all obvious that NFAs, which can branch out indefinitely as needed, are no more powerful than DFAs in the
sense that it could recognize more languages.

Notably, the 5-tuple looks formally the same for DFAs and NFAs, and indeed this is how we will tackle the proof of equiv-
alence. Importantly, the power set of a finite set is also finite, so a larger DFA can keep track of all 2 |𝑄 | possible paths,
whether or not used, simultaneously. The states traversed by an NFA form a tree where all leaves share the same depth.
Because we always work at the same level, as before, we can track all states at the same time with a collection of states with
inputs up to the current one. We’ll also consider all possible next states including those further directed by 𝜖 arrows.

To tackle 𝜖 arrows, we define a notation for all next states including those with further 𝜖 arrows.

Definition 1.14. Suppose 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) be a non-deterministic finite automaton. Given a collection of states 𝑅 ⊆ 𝑄 ,
define 𝐸 (𝑅) ⊆ 𝑄 as the set of states that can be reached from 𝑅 by traveling along 𝑛 = 0 or more 𝜖 arrows; that is,

𝐸 (𝑅) = {𝑞 ∈ 𝑄 | there exist 𝑛 ≥ 0 and 𝑟0, · · · , 𝑟𝑛 ∈ 𝑄 such that 𝑟0 ∈ 𝑅, 𝑟𝑖 ∈ 𝛿 (𝑟𝑖−1, 𝜖), and 𝑟𝑛 = 𝑞}.

Note that 𝑅 ⊆ 𝐸 (𝑅), where the equality holds if and only if 𝑁 has no 𝜖 arrows from any states in 𝑅.

Alternatively, let ⊢𝜖⊆ 𝑄 ×𝑄 be the 𝜖 step relation where 𝑞1 ⊢𝜖 𝑞2 iff 𝑞2 ∈ 𝛿 (𝑞1, 𝜖), that is, some 𝜖 arrow goes from 𝑞1 to 𝑞2.
Then, the reflexive and transitive closure1 ⊢∗𝜖 induces 𝐸 : 𝑅 → P (𝑄) by 𝐸 (𝑅) B {𝑞 ∈ 𝑄 | ∃𝑟 ∈ 𝑅, 𝑟 ⊢∗𝜖 𝑞}.

Theorem 1.15. The DFAs and the NFAs are equivalent in the sense that they recognize the same languages.

Proof. It is obvious that any language recognized by a DFA is also recognized by an NFA. To show the converse, suppose a
language 𝐴 is recognized by an NFA 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ). Define 𝑄 ′ B P (𝑄), 𝑞′0 B 𝐸 ({𝑞0}), and 𝐹 ′ B {𝑅 ∈ P (𝑄) | 𝐹 ∩ 𝑅 ≠

∅}. For all 𝑅 ∈ 𝑄 ′ and 𝑎 ∈ Σ, define
𝛿 ′ (𝑅, 𝑎) =

⋃
𝑟 ∈𝑅

𝐸 (𝛿 (𝑟, 𝑎)) .

Then, for 𝑗 = 1, · · · , 𝑛,
𝑅 𝑗 =

⋃
𝑟 ∈𝑅 𝑗−1

𝐸 (𝛿 (𝑟,𝑤 𝑗 )) .

1That is, the smallest reflexive and transitive relation containing ⊢𝜖 .
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Suppose a length-𝑛 input𝑤 = 𝑤1 · · ·𝑤𝑛 has been rewritten as𝑦1 · · ·𝑦𝑚 with𝑦1, · · · , 𝑦𝑚 ∈ Σ𝜖 with𝑁 processing the sequence
of states 𝑟0, · · · , 𝑟𝑚 ∈ 𝑄 . Let 𝑟𝑖0 , · · · , 𝑟𝑖𝑛 be the subsequence of states where each either has a non-𝜖 next input or is the final
state. Let 𝑅0, · · · , 𝑅𝑛 ⊆ 𝑄 be the states of the constructed DFA. We show by induction that for 𝑗 = 0, · · · , 𝑛, 𝑟𝑖 𝑗 ∈ 𝑅 𝑗 .

Base case. Because 𝑅0 = 𝑞′0 = 𝐸 ({𝑞0}), 𝑟0, · · · , 𝑟𝑖0 follows a path of 𝜖 arrows reaching 𝑟𝑖0 and hence 𝑟𝑖0 ∈ 𝑅0.

Inductive case. Now suppose 𝑟𝑖 𝑗−1 ∈ 𝑅 𝑗−1. Because 𝑅 𝑗 =
⋃

𝑟 ∈𝑅 𝑗−1 𝐸 (𝛿 (𝑟,𝑤 𝑗 )), we have 𝐸 (𝛿 (𝑟𝑖 𝑗−1 ,𝑤 𝑗 )) ⊆ 𝑅 𝑗 . Now, 𝑤 𝑗 =

𝑦𝑖 𝑗−1+1 implies 𝐸 ({𝑟𝑖 𝑗−1+1}) ⊆ 𝐸 (𝛿 (𝑟𝑖 𝑗−1 , 𝑦𝑖 𝑗−1+1)) ⊆ 𝑅 𝑗 . By construction, 𝑟𝑖 𝑗−1+1 ⊢∗𝜖 𝑟𝑖 𝑗 . Then, by definition, 𝑟𝑖 𝑗 ∈ 𝐸 ({𝑟𝑖 𝑗−1+1}) ⊆
𝑅 𝑗 . The induction is complete.

In particular, we have shown 𝑟𝑖𝑛 = 𝑟𝑚 ∈ 𝑅𝑛 . If 𝑁 accepts𝑤 = 𝑦1 · · ·𝑦𝑚 , that is, 𝑟𝑚 ∈ 𝐹 , then𝑀 will also accept𝑤 .

Now suppose instead that𝑀 accepts𝑤 with states 𝑅0, · · · , 𝑅𝑛 ⊆ 𝑄 . Fix a particular final accept state 𝑟 ∗ ∈ 𝑅𝑛 ∩ 𝐹 ≠ ∅. Each
state transition recursively defines 𝑟𝑖 𝑗 , and we set intermediate states to those explored on the path from the definition of
𝐸 ( · ) to find a possible sequence 𝑟0, · · · , 𝑟𝑚 ∈ 𝑄 of states ending in an accept state. Thus, 𝑁 accepts𝑤 as well. □

This equivalence gives rise to the following equivalent condition to regular languages.

Corollary 1.16. A language 𝐴 ⊆ Σ∗ is regular if and only if some non-deterministic finite automaton 𝑁 recognizes 𝐴.

The NFA is much more suited to showing that regular languages are closed under regular operations. The fact that a branch
can die allows us to handle mixed alphabet, where a “wrong” character for a branch means acceptance is impossible for
this branch. The use of 𝜖 arrows allows us to account for all possibilities simultaneously with a straightforward construc-
tion.

We first show the closure under unions, now with NFAs.

Theorem 1.17. The class of regular languages is closed under unions.

Proof. Suppose𝐴1 and𝐴2 are languages over Σ recognized by 𝑁1 = (𝑄1, Σ, 𝛿1, 𝑞1, 𝐹1) and 𝑁2 = (𝑄2, Σ, 𝛿2, 𝑞2, 𝐹2) respectively.
We construct a new NFA 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) that recognizes 𝐴1 ∪𝐴2 as follows.

Without loss of generality, suppose 𝑄1 and 𝑄2 are disjoint, which is always possible be renaming states. Create a new
symbol 𝑞0 for an artificial initial state. Let𝑄 = {𝑞0} ∪𝑄1 ∪𝑄2 be the set of states, 𝑞0 the initial state, and 𝐹 = 𝐹1 ∪ 𝐹2. Define
𝛿 : 𝑄 × Σ𝜖 → P (𝑄) by

𝛿 (𝑞, 𝑎) =


{𝑞1, 𝑞2}, if 𝑞 = 𝑞0 and 𝑎 = 𝜖,

∅, if 𝑞 = 𝑞0 and 𝑎 ≠ 𝜖,

𝛿1 (𝑞, 𝑎), if 𝑞 ∈ 𝑄1,

𝛿2 (𝑞, 𝑎), if 𝑞 ∈ 𝑄2.

It is obvious from construction that 𝑁 recognizes 𝐴1 ∪𝐴2. □

Theargument above is barelymore elegant than before, but it uses significantly less states (addition vs.multiplication).

As promised before, we now tackle string reversal. Not that for the input language, we can use either a DFA or an NFA,
whichever is easier. DFAs are easier to handle, so we’ll go with that.

Proposition 1.18. Let 𝐴 be a regular language over Σ. Then, 𝐴𝑅 is also a regular language.

Proof. Suppose𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) is a DFA recognizing 𝐴. Define an NFA 𝑁 = ({𝑞start} ∪𝑄, Σ, 𝛿 ′, 𝑞start, {𝑞0}) where

𝛿 ′ (𝑞, 𝑎) B


𝐹, if 𝑞 = 𝑞start, 𝑎 = 𝜖,

∅, if 𝑞 = 𝑞start, 𝑎 ≠ 𝜖,

{𝑞prev ∈ 𝑄 | 𝛿 (𝑞prev, 𝑎) = 𝑞} if 𝑞 ∈ 𝑄.
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Suppose 𝑀 accepts𝑤 = 𝑤1 · · ·𝑤𝑛 ∈ Σ∗ (where |𝑤 | = 𝑛), which yields states 𝑟0, · · · , 𝑟𝑛 ∈ 𝑄 . Then, 𝑟 ′0, · · · , 𝑟 ′𝑛+1 ∈ {𝑞start} ∪𝑄
is a valid sequence of states for 𝑁 where 𝑟 ′0 = 𝑞start and 𝑟 ′𝑖 = 𝑟𝑛−𝑖+1 for all 𝑖 ∈ {1, · · · , 𝑛 + 1}, upon input 𝜖𝑤𝑅 . Specifically,
when 𝑖 = 1, 𝑟 ′𝑖 = 𝑟𝑛 ∈ 𝛿 ′ (𝑟 ′𝑖−1, 𝜖) = 𝐹 . When 𝑖 > 1, 𝑟 ′𝑖 = 𝑟𝑛−𝑖+1 ∈ 𝛿 ′ (𝑟 ′𝑖−1,𝑤𝑛−𝑖+2) = {𝑞prev ∈ 𝑄 | 𝛿 (𝑞prev,𝑤𝑛−𝑖+2) = 𝑟𝑛−𝑖+2}
because 𝛿 (𝑟𝑛−𝑖+1,𝑤𝑛−𝑖+2) = 𝑟𝑛−𝑖+2. Because 𝑟0 = 𝑞0 ∈ {𝑞0}, 𝑁 accepts𝑤 .

Suppose instead that 𝑁 accepts 𝑤 with states 𝑟 ′0, · · · , 𝑟 ′𝑛+1 ∈ {𝑞start} ∪ 𝑄 , which by construction of 𝑁 must be of the form
𝜖𝑤𝑅 . Then, by similar reasoning, 𝑟 ′𝑛+1, · · · , 𝑟 ′1 ∈ 𝑄 must the (unique) sequence of states produced by𝑀 on input𝑤 . Because
𝑟 ′1 ∈ 𝐹 ,𝑀 accepts𝑤 . Hence, 𝐿(𝑁 ) = 𝐴𝑅 , and thus 𝐴𝑅 is a regular language. □

The power of NFAs is also seen through the following argument that justifies the closure of regular languages under con-
catenation. Since more than one substring including the start may be recognized by the first language, it becomes non-trivial
to determine when to move to the next NFA. We use the machinery of 𝜖 arrows to achieve this.

Theorem 1.19. The class of regular languages is closed under concatenation.

Proof. Suppose 𝐴1 ∈ Σ∗ and 𝐴2 ∈ Σ∗ are regular languages recognized by 𝑁1 = (𝑄1, Σ, 𝛿1, 𝑞1, 𝐹1) and 𝑁2 = (𝑄2, Σ, 𝛿2, 𝑞2, 𝐹2)
respectively. Without loss of generality, assume 𝑄1 and 𝑄2 are disjoint.2 We construct a new NFA 𝑁 = (𝑄, Σ, 𝛿, 𝑞1, 𝐹2) that
recognizes 𝐴1 ◦𝐴2.

Let 𝑄 = 𝑄1 ∪𝑄2 and define 𝛿 : 𝑄 × Σ𝜖 → P (𝑄) by

𝛿 (𝑞, 𝑎) =


𝛿1 (𝑞, 𝑎), if 𝑞 ∈ 𝑄1\𝐹1,
𝛿1 (𝑞, 𝜖) ∪ {𝑞2}, if 𝑞 ∈ 𝐹1 and 𝑎 = 𝜖,

𝛿1 (𝑞, 𝑎), if 𝑞 ∈ 𝐹1 and 𝑎 ≠ 𝜖,

𝛿2 (𝑞, 𝑎), if 𝑞 ∈ 𝑄2 .

If 𝑤 = 𝑥𝑦 ∈ 𝐴1 ◦ 𝐴2 where 𝑥 ∈ 𝐴1 and 𝑦 ∈ 𝐴2 with 𝑥 = 𝑥1 · · · 𝑥𝑚 and 𝑦 = 𝑦1 · · ·𝑦𝑛 (𝑥1, · · · 𝑥𝑚, 𝑦1 · · ·𝑦𝑛 ∈ Σ𝜖 ), then we will
have moved to a state in 𝐹1 upon input 𝑥1, · · · , 𝑥𝑚 , and we may by the 𝜖 arrow move to 𝑞2. Taking 𝑦1, · · · , 𝑦𝑛 then leads to
a state in 𝐹2, and 𝑁 accepts𝑤 .

If 𝑁 accepts 𝑤 = 𝑤1 · · ·𝑤ℓ (|𝑤 | = ℓ) then there must be exactly one time when the 𝜖 arrow is used, which is only possible
when 𝑁 arrives at a state in 𝐹1, matching 𝐴1. Because 𝑁 accepts 𝑤 , 𝑁 arrives at a state in 𝐹2, so the string following the
matching of 𝐴1 must match 𝐴2. Therefore,𝑤 ∈ 𝐴1 ◦𝐴2, and 𝐿(𝑁 ) = 𝐴1 ◦𝐴2. □

Our last regular operation of interest is the Kleene star, which comprises 0 or more strings from a language concatenated.
We will make use of the 𝜖 arrows to allow optional return from any accept state to the initial state for another string from
the language.

Proposition 1.20. Suppose 𝐴 is a regular language over Σ. Then, 𝐴∗ is also a regular language.

Proof. Suppose 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) is an NFA recognizing 𝐴. Then, 𝑁 ′ = (𝑄, Σ, 𝛿 ′, 𝑞0, 𝐹 ∪ {𝑞0}) is an NFA recognizing 𝐴∗,
where

𝛿 ′ (𝑞, 𝑎) B


𝛿 (𝑞, 𝑎) ∪ {𝑞0}, if 𝑞 ∈ 𝐹 , 𝑎 = 𝑒 ,
𝛿 (𝑞, 𝑎), if 𝑞 ∈ 𝐹 , 𝑎 ≠ 𝑒 ,
𝛿 (𝑞, 𝑎), if 𝑞 ∈ 𝑄\𝐹 .

If𝑤 = 𝑤1 · · ·𝑤𝑘 , where𝑤1, · · · ,𝑤𝑘 ∈ 𝐴 for some𝑘 ≥ 0, then there is a path (𝑞0 → · · · → 𝑓1 ∈ 𝐹 )
𝜖−→ · · · 𝜖−→ (𝑞0 → · · · → 𝑓𝑛 ∈

𝐹 ) that 𝑁 will accept. Similarly, if 𝑁 accept𝑤 using 𝜖 arrows (𝑘 −1) times, then it must have been that𝑤 = 𝑤1𝜖𝑤2𝜖 · · · 𝜖𝑤𝑛 ,
where each𝑤𝑖 for 𝑖 = 1, · · · , 𝑛 is accepted by𝑀 and thus𝑤𝑖 ∈ 𝐴. Therefore,𝑤 ∈ 𝐴∗, and 𝐿(𝑁 ) = 𝐴∗. □

2Otherwise, replace𝑄1 ← 𝑄1 × {1} and𝑄2 ← 𝑄2 × {0}, adjusting 𝛿1,2, 𝑞1,2, and 𝐹1,2
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1.3 Regular Expressions

Regular expressions, also known as regexes, are expressions that are used in everyday programming to match a certain type
of strings. For example, when you write an app and you need an email format checker before a user tries to login, you can
write something like

Σ+ (.Σ+)∗@Σ+ (.Σ+)+

to match email addresses with the alphabet Σ ∪ {@, .}. We define regular expressions as follows.

Definition 1.21. Regular expressions over an alphabet Σ, denoted as R[Σ] or simply R, are strings with alphabet Σ ∪
{“(”, “)”, “∪”, “∗”} generated by finitely many applications of the following rules:

• 𝑎 is a regular expression for all 𝑎 ∈ Σ;

• 𝜖 is a regular expression;3

• ∅ is a regular expression;

• If 𝑅1 and 𝑅2 are regular expressions, then (𝑅1 ∪ 𝑅2) is also a regular expression;

• If 𝑅1 and 𝑅2 are regular expressions, then (𝑅1𝑅2) is also a regular expression;

• If 𝑅 is a regular expressions, then (𝑅∗1) is also a regular expression.

The precedence of the operators are third over second over first, which together with the associativity of unions and con-
catenation allows the omission of certain pairs of parentheses. It is often useful to have shorthands “Σ” B (𝜎1 ∪ · · · ∪ 𝜎𝑛)
where Σ = {𝜎𝑖 }𝑛𝑖=1, 𝑅𝑘 B 𝑅 · · ·𝑅︸ ︷︷ ︸

𝑘 copies

, 𝑅+ B (𝑅𝑅∗), and 𝑅? B (𝑅 ∪ 𝜖).

A regular expression represents a language, which we define as follows.

Definition 1.22. Each a regular expression 𝑅 over Σ defines a language 𝐿(𝑅) ⊆ Σ by the applying following rules in the
manner the regular expression is constructed:

• If 𝑅 = 𝑎 for some 𝑎 ∈ Σ, then 𝐿(𝑅) = {𝑎};

• If 𝑅 = 𝜖 , then 𝐿(𝑅) = {𝜖};

• If 𝑅 = ∅, then 𝐿(𝑅) = ∅;

• If 𝑅 = 𝑅1 ∪ 𝑅2 where 𝑅1 and 𝑅2 are regular expressions, then 𝐿(𝑅) = 𝐿(𝑅1) ∪ 𝐿(𝑅2);

• If 𝑅 = 𝑅1𝑅2 where 𝑅1 and 𝑅2 are regular expressions, then 𝐿(𝑅) = 𝐿(𝑅1) ◦ 𝐿(𝑅2);

• If 𝑅 = 𝑅∗1 where 𝑅1 is a regular expression, then 𝐿(𝑅) = 𝐿(𝑅1)∗.

Here are some examples that show just how versatile they are:

• 𝐿(0∗10∗) = {𝑤 | 𝑤 contains exactly one 1};

• 𝐿(Σ∗1Σ∗) = {𝑤 | 𝑤 contains at least one 1};

• 𝐿((Σ2)∗ ∪ (Σ3)∗) = {𝑤 | 2 | the length of𝑤 is divisible by 2 or 3};

• 𝐿(0∗ (10∗1)∗) = {𝑤 | 𝑤 contains an even number of 1’s};

• 𝐿(1∗∅) = ∅;

• 𝐿(∅∗) = {𝜖}.
3This is redundant since 𝜖 is equivalent to ∅∗.
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It’s quite obvious that we can build an NFA for every regular expression just by piecing together the definition. Clearly,
every character as a language can be recognized by an NFA, and so is the empty string and the empty language. The closure
of regular expressions mean that the language of any regular expressions can be recognized by some NFA.

Conversely, can we build a regular expression equivalent to any given NFA?The answer is yes, which we justify with a new
piece of machinery called generalized non-deterministic finite automata (GNFA).

Whereas in an NFA an arrowmust be with a single input character from Σ𝑒 , a GNFA has a regular expression over Σ attached
to each arrow, allowing the machine to read chunks of the input string at each state as needed. But we want to avoid setting
𝛿 ’s domain to 𝑄 ×R[Σ] because a GNFA is finite, while there are infinitely many regular expressions in R[Σ]. Instead,
we make the following restrictions, so that now 𝛿 : (𝑄\{𝑞accept}) × (𝑄\{𝑞start}) → R[Σ] can still be described in a finite
manner.

• A GNFA has (exactly) one start state that has an arrow to every other state and has no incoming arrows;

• A GNFA has exactly one accept state that has an arrow from every other state and has no outgoing arrows;

• A GNFA has arrows from every non-accept state to every non-start state, including loops.

For non-existent arrows, we assigning ends of the arrow with ∅ for 𝛿 . For arrows with the same ends, we take the union of
the characters to form the expression associated with the new, unique arrow.

Definition 1.23. A generalized non-deterministic finite automaton 𝐺 is a 5-tuple (𝑄, Σ, 𝛿, 𝑞start, 𝑞accept), where

• 𝑄 is a finite set of states;

• Σ is a finite, non-empty set of the alphabet;

• 𝛿 : (𝑄\{𝑞accept}) × (𝑄\{𝑞start}) → R[Σ];

• 𝑞start ∈ 𝑄 is the start state;

• 𝑞accept ∈ 𝑄 , distinct from 𝑞start, is the accept state.

We define the language of a GNFA in a similar way as before.

Definition 1.24. Let𝐺 = (𝑄, Σ, 𝛿, 𝑞start, 𝑞accept) be a generalized non-deterministic finite automaton and𝑤 ∈ Σ∗ be an input
string. 𝐺 is said to accept 𝑤 if (i) there exists some 𝑘 > 0 with 𝑤 = 𝑤1 · · ·𝑤𝑘 where 𝑤1, · · · ,𝑤𝑘 ∈ Σ∗ and (ii) there exist
states 𝑞0, · · · , 𝑞𝑘 ∈ 𝑄 such that

• 𝑞0 = 𝑞start;

• 𝑤𝑖 ∈ 𝐿(𝛿 (𝑞𝑖−1, 𝑞𝑖 )) for all 𝑖 = 1, · · · , 𝑘 ;

• 𝑞𝑘 = 𝑞accept.

Otherwise, 𝐺 is said to reject𝑤 .

In other words, we accept a string𝑤 if we can put it into 𝑘 chunks (where a chunk can be 𝜖) so that we can transition along
the arrows one chunk at a time to an accept state.

We first demonstrate how to convert a DFA into a GNFA.

Proposition 1.25. Suppose 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) is a DFA. Then, there exists a GNFA 𝐺 = (𝑄 ′, Σ, 𝛿 ′, 𝑞start, 𝑞accept) such that
𝐿(𝐺) = 𝐿(𝑀).

Proof. First, we add 𝑞start and 𝑞accept. Let𝑄 ′ = 𝑄 ∪ {𝑞start, 𝑞accept}. Let 𝛿 ′ : ({𝑞start} ∪𝑄) × (𝑄 ∪ {𝑞accept}) → R[Σ] be defined
as
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• If 𝑞𝑖 = 𝑞start:

– If 𝑞 𝑗 = 𝑞0, return 𝜖 ;

– Otherwise, return ∅;

• If 𝑞𝑖 ∈ 𝑄 :

– If 𝑞 𝑗 ∈ 𝑄 , return
⋃{𝑎 ∈ Σ | 𝑞 𝑗 = 𝛿 (𝑞𝑖 , 𝑎)};

– If 𝑞 𝑗 = 𝑞accept,

∗ If 𝑞𝑖 ∈ 𝐹 , return 𝜖 ;

∗ If 𝑞𝑖 ∈ 𝑄\𝐹 , return ∅.

The added 𝑞start and 𝑞accept clearly do not change anything. The union construction for multiple arrows is as intended.
Therefore, 𝐿(𝐺) = 𝐿(𝑀). □

Now, to convert a GNFA to a regular expression, we will rip out one state at a time until there’s only the start and the accept
states. At this point, there’s exactly one arrow from the start to accept by definition, and that must be the regular expression
equivalent to the GNFA.

𝑞rip

𝑞𝑖 𝑞 𝑗
𝑅4

𝑅1

𝑅2

𝑅3

Figure 10: Two nodes 𝑞𝑖 , 𝑞 𝑗 in a GNFA through 𝑞rip.

𝑞𝑖 𝑞 𝑗
𝑅1 (𝑅2)∗𝑅3 ∪ 𝑅4

Figure 11: The transition from 𝑞𝑖 to 𝑞 𝑗 after ripping out
𝑞rip.

The basic idea is as follows. Any states (𝑞𝑖 , 𝑞 𝑗 ) ∈ (𝑄\{𝑞accept}) × (𝑄\{𝑞start}) will pass through 𝑞rip (with possibly ∅ arrows),
and we can create an equivalent regex to go from 𝑞𝑖 to 𝑞 𝑗 without 𝑞rip. After every pair of states is accounted for, we can
safely remove 𝑞rip. We’ll repeat this procedure until we have only two states left, the start and the accept states.

Lemma 1.26. Suppose 𝐺 = (𝑄, Σ, 𝛿, 𝑞start, 𝑞accept) is a GNFA with |𝑄 | > 2 states. Then, there exists another GNFA 𝐺 ′ =

(𝑄 ′, Σ, 𝛿 ′, 𝑞start, 𝑞accept) with |𝑄 |′ = |𝑄 | − 1 states such that 𝐿(𝐺 ′) = 𝐿(𝐺).

Proof. Let 𝑘 = |𝑄 | be the number of states of 𝐺 . Because 𝑘 > 2, there must exist some state 𝑞rip ∈ 𝑄\{𝑞start, 𝑞accept} which
we will remove. Let 𝑄 ′ B 𝑄\{𝑞rip}, and define for each 𝑞𝑖 ∈ 𝑄\{𝑞accept} and 𝑞 𝑗 ∈ 𝑄\{𝑞start} the transition

𝛿 ′ (𝑞𝑖 , 𝑞 𝑗 ) B (𝑅1) (𝑅2)∗ (𝑅3) ∪ (𝑅4),

where 𝑅1 = 𝛿 (𝑞𝑖 , 𝑞rip), 𝑅2 = 𝛿 (𝑞rip, 𝑞rip), 𝑅3 = 𝛿 (𝑞rip, 𝑞 𝑗 ), and 𝑅4 = 𝛿 (𝑞𝑖 , 𝑞 𝑗 ) are regular expressions defined as in the Figure
above.

Suppose 𝐺 accepts 𝑤 ∈ Σ∗ with a sequence of states 𝑞start, 𝑞1, · · · , 𝑞𝑘 , 𝑞accept. If 𝑞rip ∉ {𝑞1, · · · , 𝑞𝑘 }, then clearly 𝐺 ′ also
accepts𝑤 with the same sequence of states. Otherwise, remove all occurrences of 𝑞rip and consider all pairs of states (𝑞𝑖 , 𝑞 𝑗 )
with 𝑖 < 𝑗 surrounding the one or more removed 𝑞rip’s. Because the new transition described all possible transitions from
𝑞𝑖 to 𝑞 𝑗 with arbitrarily many intermediate repetitions of 𝑞rip’s, 𝐺 ′ will accept𝑤 with the purged sequence of states.

Now, suppose instead that𝐺 ′ accepts𝑤 ∈ Σ∗ with a sequence of states 𝑞0, · · · , 𝑞𝑛 . Consider each pair of consecutive states
(𝑞𝑖 , 𝑞 𝑗 ) where 0 ≤ 𝑖 < 𝑛 and 𝑗 = 𝑖 + 1. The substring 𝑤𝑖 that allows this transition must also be matched 𝐺 from 𝑞𝑖 to 𝑞 𝑗 ,
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following arbitrarily many (and optional) repetitions of 𝑞rip. Then, since each transition is possible, we conclude that𝐺 also
accepts𝑤 . This concludes the proof of the equivalence of 𝐺 and 𝐺 ′. □

Now, we can piece together everything to show that regular expressions describe exactly the regular languages.

Proposition 1.27. The class of languages recognized by regular expressions is exactly the regular languages.

Proof. We first show that the language of every regular expression can be recognized by an NFA. The singleton language
𝐴 = {a} for 𝑎 ∈ Σ is recognized by the NFA

𝑎

The empty language 𝐵 = {∅} is recognized by the NFA

Because the regular languages are the smallest family of languages containing the above and closed under the regular
operations, the regular expressions must be expressible by NFAs by the same closure properties.

We now show that every regular language is the language of some regular expression. Let 𝑀 be a finite automaton recog-
nizing a regular language, which has an equivalent GNFA 𝐺 by Proposition 1.25. Applying Lemma 1.26 repeated (𝑛 − 2)
times, where 𝑛 is the number of states of 𝐺 , we have an equivalent GNFA 𝐺 ′ with exactly 2 states.

Then the range of the transition function 𝛿 ′ of 𝐺 ′ contains exactly one element, which is 𝑅 B 𝛿 (𝑞start, 𝑞accept) ∈ R[Σ]. We
claim that 𝐿(𝑅) = 𝐿(𝐺 ′). Indeed, an input string 𝑤 ∈ Σ∗ for 𝐺 ′ has exactly one rewriting, so 𝐺 ′ accepts 𝑤 if and only if 𝑤
is matched by the only arrow 𝑅 to the accept state. Then, 𝐿(𝑅) = 𝐿(𝐺 ′) = 𝐿(𝐺) = 𝐿(𝑀), and the proof is complete. □

1

2

a

b

a,b

Figure 12: An example DFA.

𝑠 1

𝑎 2

𝜖 a

b

a ∪ b𝜖

Figure 13: Conversion to a GNFA with 4 states.

𝑠

𝑎 2

a*b

a,b
𝜖

Figure 14: Removing state 1.

𝑠

𝑎

a*b(a ∪ b)*

Figure 15: Removing state 2.
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Here’s an example of the actual reduction. We first added new start and accept states to isolate the self-loops. Then, we
remove state 1 by considering 𝜖a*b∪∅. Subsequently, state 2 is also removed by considering a*b(a∪ b)*𝜖 ∪∅. This gives
us the final equivalent regex, which is a*b(a∪b)*. This result will conclude our discussions on regular expressions.

1.4 Non-Regular Languages

While finite automata are powerful—our everyday computers and phone are finite automata, they are also quite limited
theoretically. This is due to the finitude of their design: they cannot count, because counting requires separate states to
distinguish the count so far but a count could be infinite.

Let’s first take the language 𝐴 = {0𝑛1𝑛 | 𝑛 ≥ 0}. To design a DFA for 𝐴, it seems that we’ll have to keep track of how many
0’s we’ve seen so far. But there could be potentially infinitely many, and we cannot have that many states.

But this is not a formal argument. Just because one common way we try to find DFAs failed doesn’t mean there’s no way.
Consider 𝐵 = {𝑤 ∈ {0, 1}∗ | 𝑤 has an equal number of 0’s and 1’s} and 𝐶 = {𝑤 ∈ {0, 1}∗ | 𝑤 contains an equal number of
substrings 01 and 10}. While 𝐵 is not regular, 𝐶 surprisingly is! A possible regular expression is

𝐿(𝜖 |(0+(1+0+)+|1+(0+1+)+) = 𝐶.

What tool do we have, then, to show rigorously that a language is not regular? We have the following result known as the
pumping lemma for regular languages, that describes the essence of the “counting” argument above.

Lemma 1.28 (Pumping Lemma for Regular Languages). Suppose 𝐴 is a regular language over Σ. Then, there exists a
pumping length 𝑝 ∈ Z>0 such that for all𝑤 ∈ 𝐴 with |𝑤 | ≥ 𝑝 , we have 𝑥,𝑦, 𝑧 ∈ Σ∗ such that

• 𝑥𝑦𝑖𝑧 ∈ 𝐴 for all 𝑖 ≥ 0;

• |𝑦 | > 0;

• |𝑥𝑦 | ≤ 𝑝 .

Of course, we will resort to the simplest DFAs here. The key is to exploit the fact that there can be more states/inputs than
there are states. If the input is long enough with |𝑤 | = 𝑛 ≥ 𝑝 , then in the sequence of 𝑛 + 1 > 𝑝 states, we have by the
pigeonhole principle at least ⌈(𝑛 + 1)/𝑝⌉ ≥ 2 states in the sequence repeated. Because a DFA doesn’t remember anything
about the past except the current state, we can repeat this loop of inputs indefinitely many times and end up in the same
place.

Proof. Let 𝑀 = (𝑄, Σ, 𝛿, 𝑞1, 𝐹 ) be a DFA recognizing 𝐴 and define 𝑝 = |𝑄 | to be the pumping length. Let 𝑤 = 𝑤1 · · ·𝑤𝑛 be a
string in 𝐴 with |𝑤 | = 𝑛 ≥ 𝑝 . Suppose the computation of𝑤 by𝑀 yields states 𝑟0, · · · , 𝑟𝑛 ∈ 𝑄 . By the pigeonhole principle,
at least ⌈(𝑛 + 1)/𝑛⌉ = 2 states will be repeated in the first 𝑛 states. Denote the first two repeated states 𝑟𝑠 = 𝑟𝑡 where 𝑠 < 𝑡 .
Let 𝑥 = 𝑤1 · · ·𝑤𝑠 , 𝑦 = 𝑤𝑠+1 · · ·𝑤𝑡 , and 𝑧 = 𝑤𝑡 · · ·𝑤𝑛 .

We now show that these definition satisfy the stated requirements. Let 𝑖 ≥ 0 be arbitrary and consider the input 𝑥𝑦𝑖𝑧. After
input 𝑥 , 𝑀 will transition to 𝑟𝑠 . Because 𝑀 goes from 𝑟𝑠 to 𝑟𝑠 upon inputs 𝑦, we conclude that 𝑀 will stay at 𝑟𝑠 after any 𝑖
copies of 𝑦. Then, 𝑧 will take𝑀 to 𝑟𝑛 at which point𝑀 accepts 𝑥𝑦𝑖𝑧. Next, |𝑦 | = 𝑡 − (𝑠 + 1) + 1 = 𝑡 − 𝑠 > 0 because 𝑠 < 𝑡 by
construction. Lastly, |𝑥𝑦 | = 𝑡 ≤ 𝑝 by construction as well. □

The pumping lemma is extremely useful when we want to show that a language is not regular. By the contrapositive, if we
find an accept string that cannot be pumped, then the language cannot be regular.

Let’s see this in practice with our previous example 𝐴 = {0𝑛1𝑛 | 𝑛 ≥ 0}.

Proof. Suppose for the sake of contradiction that𝐴 ⊆ Σ∗ is regular, where Σ = {0, 1}. By the pumping lemma (Lemma 1.28),
fix the pumping length 𝑝 > 0. Let 𝑤 = 0𝑝1𝑝 ∈ 𝐴. Then, fix 𝑥,𝑦, 𝑧 ∈ Σ∗ according to the lemma. Because |𝑥𝑦 | ≤ 𝑝 , we
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conclude that 𝑥 and 𝑦 consist of only 0’s. Then, 𝑥𝑦0𝑧 = 𝑥𝑧 has fewer 0’s than 1’s, which cannot be recognized by 𝐴. This is
a contradiction, which implies that 𝐴 cannot be regular. □

Another interesting example is 𝐷 = {1𝑛2 | 𝑛 ≥ 0} ⊆ {1}∗ over a alphabet consisting of only 1.

Proof. Suppose on the contrary that 𝐷 is regular. Let 𝑝 > 0 be the pumping length and consider the string 𝑤 = 1𝑝2 . Fix
𝑥,𝑦, 𝑧 ∈ {1}∗ according to the pumping lemma. Since we have a unary language, it is easier to work with 𝑎 = |𝑥 |, 𝑏 = |𝑦 |,
and 𝑐 = |𝑧 |. By the pumping lemma, 𝑥𝑦2𝑧 = 1𝑝2+𝑏 ∈ 𝐷 . Let 𝑝2 + 𝑏 = 𝑞2, where 𝑞 ≥ 0. Then,

𝑝2 < 𝑞2 = 𝑝2 + 𝑏 ≤ 𝑝2 + 𝑝 < 𝑝2 + 2𝑝 + 1 = (𝑝 + 1)2 .

Because 𝑞2 is strictly contained between a pair of consecutive perfect squares 𝑝2 and (𝑝 + 1)2, 𝑞2 cannot be a perfect square,
a contradiction. Therefore, 𝐷 cannot be regular. □

The regular languages are quite nuanced; we can seem to have a problem that can be tackled by them but an essentially
equal one that cannot. First, we’ll consider string reversal in a different context.

Consider the alphabet

Σ2 = {0, 1}2 =
{[
0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
1

]}
,

a construction that allows us to read two strings (of the same length) simultaneously by reading a pair of characters each
time. We claim that the language 𝐸 over Σ defined by

𝐸 = {𝑤 ∈ Σ∗2 | the bottom row of𝑤 is the reversal of the top row}

is not regular, even though regular languages are closed under reversal.

Proof. Suppose instead that 𝐸 is regular, whereby we fix the pumping length 𝑝 > 0. Let 𝑤 =

[
0
1

]𝑝 [
1
0

]𝑝
which 𝐸 recognizes

by construction. Fix 𝑥,𝑦, 𝑧 ∈ Σ∗2 according to the pumping lemma. Because |𝑥𝑦 | ≤ 𝑝 , we conclude that 𝑥 and 𝑦 both consist

of
[
0
1

]
only. Then, 𝑥𝑦2𝑧 ∈ 𝐸 cannot be regular, which has more 0’s than 1’s in the top row but more 1’s than 0’s in the bottom

row. This is a contradiction, which shows that 𝐸 cannot be regular. □

Another interesting example is addition. The language

{𝑤 ∈ Σ∗3 | the sum of the two top rows of𝑤 equals the third row when viewed as binary numbers}

over Σ∗3 = {0, 1}3 is regular, but the language

{“𝑧 = 𝑥 + 𝑦” | 𝑥,𝑦, 𝑧 ∈ {0, 1}∗ and 𝑧 = 𝑥 + 𝑦}

over {0, 1,=, +} is not regular.

Our final result in this chapter is the Myhill-Nerode theorem, an “if and only if” condition about when a language is regular.
We define an equivalence relation ∼𝐿 for strings indistinguishable by a language.

Definition 1.29. Let 𝐿 ⊆ Σ∗ be a language. Two strings 𝑥,𝑦 ∈ 𝐿 are said to be indistinguishable by 𝐿, denoted as 𝑥 ∼𝐿 𝑦, if
𝑥𝑧 ∈ 𝐿 ⇐⇒ 𝑦𝑧 ∈ 𝐿 for all suffixes 𝑧 ∈ Σ∗. This defines an equivalence relation ∼𝐿 on Σ∗, whose collection of equivalence
classes we denote with 𝐾 . The index of 𝐿 is then defined as |𝐾 |, the number of equivalence classes of ∼𝐿 , which may be
finite or infinite. Note that the equivalence class of an element is denoted as [·] : Σ∗ → P (Σ∗).

Immediately, if one string is in 𝐿 and the other isn’t, then they are distinguishable by 𝐿 considering the trivial extension
𝑧 = 𝜎 . The converse isn’t true: if 𝐿 = {0, 1, 01} with 𝑥 = 0 and 𝑦 = 1, then even though both 𝑥,𝑦 ∈ 𝐿, we have 𝑥𝑧 = 01 ∈ 𝐿
but 𝑦𝑧 = 11 ∉ 𝐿. A language usually distinguishes strings better than simply recognition by the language.

There are some notions related to minimal DFAs which we detail.
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Definition 1.30. Suppose𝑀 is a DFA over Σ. For strings 𝑥,𝑦 ∈ Σ∗, define 𝑥 ∼𝑀 𝑦 if the final state of𝑀 coincides whether
the input string is 𝑥 or 𝑦. This defines an equivalence relation on Σ∗.

This other equivalence relation looks at the state of the DFA after an input. In general, ∼𝑀 ≠ ∼𝐿 , for example, when 𝑀
has two separate trap states where one is redundant. However, we will show below that this is the case when a DFA is
minimal:

Definition 1.31. A DFA𝑀 is said to be minimal if every DFA equivalent to𝑀 has at least as many states as𝑀 .

Clearly, there is a minimal DFA for every regular language.

The following theorem says that a language is regular if and only if its index is finite. The big idea is that the equivalence
classes contain correspond to the actually “needed” states. [TK]

Theorem 1.32 (Myhill-Nerode). Suppose 𝐿 ⊆ Σ∗ is a language. Then,

• 𝐿 is regular if and only if the index of 𝐿 is finite;

• If 𝐿 is regular, then every minimal DFA recognizing 𝐿 is isomorphic4 to the DFA �̃� = (𝐾, Σ, 𝛿, [𝜖], {[𝑥] | 𝑥 ∈ 𝐿}) where

𝛿 ( [𝑥], 𝑎) B [𝑥𝑎] .

Before we start, it is noteworthy that the definition of 𝛿 above is consistent. Suppose 𝑥,𝑦 ∈ Σ∗ are indistinguishable. Then,
for any suffix 𝑧 ∈ Σ∗, 𝑥𝑎𝑧 ∈ 𝐿 ⇐⇒ 𝑦𝑎𝑧 ∈ 𝐿 because 𝑎𝑧 ∈ Σ∗ is also a suffix. Then, [𝑥𝑎] = [𝑦𝑎].

Proof. Suppose 𝐿 is regular. Fix a minimal DFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) recognizing 𝐿. If 𝑥 ∼𝑀 𝑦, then 𝑀 goes to the same final
state upon inputs 𝑥 or 𝑦. By definition, any subsequent inputs will lead to the same state, and hence accept or reject both
simultaneously. That is, 𝑥𝑧 ∈ 𝐿 ⇐⇒ 𝑦𝑧 ∈ 𝐿 for any subsequent inputs 𝑧 ∈ Σ∗, so 𝑥 ∼𝐿 𝑦. Any set of strings that is pairwise
∼𝐿 different must then be pairwise ∼𝑀 -different. Then, ∼𝐿 can have no more equivalence classes than ∼𝑀 , which equals
|𝑄 |.5 Thus, the index of 𝐿 is at most the number of states of a minimal DFA, which is finite.

Conversely, suppose the index of 𝐿 is finite. Then, �̃� is a DFA, which wewill show is equivalent to𝑀 . Let𝑤 = 𝑤1 · · ·𝑤𝑛 ∈ Σ∗
be an input string (𝑛 = |𝑤 |) with final state 𝑟𝑛 ∈ 𝐾 from �̃� .

We claim that 𝑟𝑛 = [𝑤] by proving 𝑟𝑖 = [𝑤1 · · ·𝑤𝑖 ] for all 𝑖 ∈ {0, · · · , 𝑛} with induction. For the base case, 𝑟0 = [𝜖] by
construction. For the inductive case with 𝑖 ∈ {1, · · · , 𝑛} assuming 𝑟𝑖−1 = [𝑤1 · · ·𝑤𝑖−1], we deduce 𝑟𝑖 = [(𝑤1 · · ·𝑤𝑖−1) (𝑤𝑖 )] =
[𝑤1 · · ·𝑤𝑖 ]. This argument justifies the claim.

Now, if �̃� accepts 𝑤 , then [𝑤] = 𝑟𝑛 = [𝑤 ′] for some 𝑤 ′ ∈ 𝐿. Then, 𝑤 ∼𝐿 𝑤 ′. With the empty suffix in particular,
𝑤 ∈ 𝐿 ⇐⇒ 𝑤 ′ ∈ 𝐿. Because 𝑤 ′ ∈ 𝐿, 𝑤 ∈ 𝐿 also. Conversely, if 𝑤 ∈ 𝐿, then 𝑟𝑛 = [𝑤] already, so �̃� accepts 𝑤 . This
concludes the proof of the first item.

Now suppose 𝐿 is known to be regular. We have already shown that 𝑥 ∼𝑀 𝑦 implies 𝑥 ∼𝐿 𝑦, so the equivalence classes of
∼𝑀 are contained among the equivalence classes of ∼𝐿 . Observe that |𝑄 | ≤ |𝐾 | because 𝑀 is minimal, and |𝐾 | ≤ |𝑄 | from
the first item. Then, |𝑄 | = |𝐾 |; that is, �̃� is a minimal DFA. This further implies that ∼𝑀 and ∼𝐿 have the same equivalence
classes and hence are equal. Note that each equivalence class of ∼𝑀 corresponds uniquely to a state in𝑄 . Because ∼𝑀 = ∼𝐿 ,
we naturally associate to each state of𝑀 an equivalence class of ∼𝐿 . This is a bijection from the states of𝑀 to the states of
�̃� . Suppose𝑀 has transitioned to state 𝑞 ∈ 𝑄 with input𝑤1 · · ·𝑤𝑖−1 so far (𝑤1, · · · ∈ Σ). The state of �̃� associated with 𝑞 is
the equivalence class of the input so far, namely [𝑤1 · · ·𝑤𝑖−1]. Now, [𝑤1 · · ·𝑤𝑖 ] = 𝛿 ( [𝑤1 · · ·𝑤𝑖−1],𝑤𝑖 ), which is the state of
�̃� associated with 𝛿 (𝑞,𝑤𝑖 ). By construction, the initial state [𝜖] of �̃� corresponds to 𝑞0, the state of 𝑀 upon no input. The
accept states of �̃� are precisely the final states from computing the string accepted by 𝐿. The proof is now complete. □

4That is, equal up to renaming states.
5More specifically, the number of equivalence classes of𝑀 is the number of different final states that any string can reach. In aminimal DFA, all states

must be reachable: otherwise, the unreachable states could have been removed to create a smaller equivalent DFA, a contradiction. Then, this number
must be equal to |𝑄 | .
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The Myhill–Nerode theorem is stronger than the pumping lemma. While there are non-regular languages that still satisfy
the pumping lemma, this theorem is an “if and only if.” This means we can construct infinitely many distinguishable strings
to show that a language can’t be regular. At the same time, we can only prove how many states a DFA must have in order
to recognize a regular language. Let’s see these applications in practice.

We will show that any DFA recognizing the singleton language 𝐿 = {1} over Σ = {1} must have at least 3 states. This
is justified by considering the strings 𝜖, 1, 11, which we claim are pairwise distinguishable. There are three pairs to con-
sider:

• 𝜖 and 1: Because 𝜖 ◦ 1 ∈ 𝐿 but 1 ◦ 1 ∉ 𝐿 for the suffix 1, 𝜖 ≁𝐿 1;

• 𝜖 and 11: Because 𝜖 ◦ 1 ∈ 𝐿 but 11 ◦ 1 ∉ 𝐿 for the suffix 1, 𝜖 ≁𝐿 11;

• 1 and 11: Because 1 ◦ 𝜖 ∈ 𝐿 but 11 ◦ 𝜖 ∉ 𝐿 for the suffix 𝜖 , 1 ≁𝐿 11.

This means that ∼𝐿 has at least 3 equivalence classes. Since the number of equivalence classes of ∼𝐿 equals the number
of states in the minimal DFA, we have shown that any DFA recognizing 𝐿 must have at least 3 states. Note that we could
restrict Σ = {1}, and the argument remains valid.

Let’s also try to use this theorem for showing that 𝐿 = {0𝑛1𝑛 | 𝑛 ≥ 0} over Σ = {0, 1} is not regular. To this end, we
will construct infinitely many strings that are pairwise different. We claim that the strings {0, 00, 000, · · · } are pairwise
distinguishable. Let 0𝑛 and 0𝑚 be arbitrary strings from that set, where we assume 0 < 𝑛 < 𝑚. Then, 0𝑛 ≁𝐿 0𝑚 because
0𝑛1𝑛 ∈ 𝐿 but 0𝑚1𝑛 ∉ 𝐿 considering the suffix 1𝑛 . Then, each of the infinitely many strings will be in a separate equivalence
classes, so there must be infinitely many such equivalence classes. As a result, 𝐿 cannot be regular.

2 Context-Free Languages

2.1 Context-Free Grammars

We’ve seen the theoretical foundation of regular expressions, which turn out to be equivalent to DFAs and NFAs. However,
as we’ve also seen, certain languages as simple and ubiquitous as 𝐿 = {0𝑛1𝑛 | 𝑛 ≥ 0} ⊆ {0, 1}∗ are not regular. What would
be a reasonable extension to regular languages? We answer this question with the introduction of context-free languages
(CFGs), a radically different formalism that defines a language.

Let’s first see an example that describes the 𝐿 from above:

𝑆 → 0𝑆1
𝑆 → 𝜖.

What do these two lines of equations do? They’re called substitution rules, with which we can derive a string from a start
symbol 𝑆 . For instance, to get to 000111, we repeated apply the rules to replace any occurrence of S with the right hand
side:

𝑆 ⇒ 0S1 (Rule 1)
⇒ 00𝑆11 (Rule 1)
⇒ 000𝑆111 (Rule 1)
⇒ 000111. (Rule 2)

If you take a moment to think about all possible strings that can be generated in this way, it shouldn’t be surprising that
they form the language 𝐿. What we just showed is called the derivation of 000111, which can also be represented as a tree
like this:
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S

0 S

0 S

0 S

𝜖

1

1

1

This neatly represents how the string is derived from the start. Now, we’ll introduce the formal definition.

Definition 2.1. A context-free grammar is a 4-tuple (𝑉 , Σ, 𝑅, 𝑆), where

• 𝑉 is a finite set of variables or nonterminals;

• Σ is a finite, non-empty set of the alphabet, called the terminals;

• 𝑅 ⊆ 𝑉 × (𝑉 ∪ Σ)∗;

• 𝑆 ∈ 𝑉 is the start variable.

Formally, we have defined 𝑅 as a collection of tuples, ( · 1, · 2), which we choose to write as · 1→ · 2. Now, how does a
CFG define a language? We first define relations that describe how a string is generated.

Definition 2.2. Suppose 𝐺 = (𝑉 , Σ, 𝑅, 𝑆) is a context-free grammar. If 𝑢, 𝑣,𝑤 ∈ (𝑉 ∪ Σ)∗ and “𝐴 → 𝑤” ∈ 𝑅, then we say
that 𝑢𝐴𝑣 yields 𝑢𝑤𝑣 , denoted as 𝑢𝐴𝑣 ⇒ 𝑢𝑤𝑣 . The reflexive and transitive closure of⇒ is defined as the derivation relation
⇒∗. The notation 𝑢 ⇒∗ 𝑣 is read as “𝑢 derives 𝑣 .” Finally, the language of 𝐺 is defined as 𝐿(𝐺) B {𝑤 ∈ Σ∗ | 𝑆 ⇒∗ 𝑤}. A
language generated by a context-free grammar is said to be a context-free language.

We will refrain from formally definition a parse tree. Note that a parse tree is more than a graph-theoretic tree: it also
encodes the ordering of the characters (from left to right) at each level. That is,

S

0 S 1

S

1 S 0

represent the same tree but not the same parse tree.

The reason why parse trees are important is because they show the structure of operations. This can be important in, e.g.,
parsing arithmetic expressions for a compiler, where we care about not just whether a string is a valid expression, but also
what the expression is. Let’s take a look at the following grammar:

𝑆 → 𝑆 + 𝑆 | 𝑆 ∗ 𝑆
𝑆 → 𝑥 | 𝑦 | 𝑧

Note that the bars are used to condense two or more rules with the same left hand side. Now, this grammar recognizes the
string 𝑥 + 𝑦 ∗ 𝑧, but it has two different parse trees:
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S

S

x

+ S

S

y

* S

z

S

S

S

x

+ S

y

* S

z

This is a noteworthy issue because these two ways of parsing the string means the expression can be understood mathe-
matically as either 𝑥 + (𝑦 ∗ 𝑧) or (𝑥 + 𝑦) ∗ 𝑧, which are clearly not the same. A compiler’s CFG should be designed so that
the first is always preferred over the second. This can be achieved by the following grammar:

𝑆 → 𝑆 +𝑇 | 𝑇
𝑇 → 𝑇 ∗𝑈 | 𝑈
𝑈 → (𝑆) | 𝑥 | 𝑦 | 𝑧.

These undesirable situations are so practically important that they deserve further investigation, which necessitates some
definitions.

Definition 2.3. Suppose𝐺 is a context-free grammar. A string𝑤 ∈ 𝐿(𝐺) is said to be ambiguously derived in𝐺 if𝑤 admits
two different parse trees in 𝐺 . The grammar 𝐺 is said to be ambiguous if such a string 𝑤 exists. A context-free language 𝐿
is said to be inherently ambiguous if every context-free grammar generating 𝐿 is ambiguous.

To work with context-free grammars in general, it’s usually convenient theoretically when we condense it to a specialized
form, the Chomsky normal form.

Definition 2.4. A context-free grammar is said to be in Chomsky normal form if every rule is of the form

𝐴→ 𝐵𝐶 or 𝐴→ 𝑎 or 𝑆 → 𝜖,

where nonterminal 𝐴 ∈ 𝑉 , nonterminals 𝐵,𝐶 ∈ 𝑉 \{𝑆} , and terminal 𝑎 ∈ Σ.

It is not entirely obvious that every CFG can be put into Chomsky normal form. We will show that this is the case by
constructing an equivalent grammar in the normal form.

Theorem 2.5. Any context-free language is generated by a context-free grammar in Chomsky normal form.

Proof. Suppose 𝐺 = (𝑉 , Σ, 𝑅, 𝑆) is a context-free grammar recognizing a given context-free language.

First, we add a new start variable 𝑆0 and the rule 𝑆0 → 𝑆 which makes sure the right hand side never contains the start
variable.

Then, for the 𝜖-rules, we remove any rule 𝐴 → 𝜖 where 𝐴 ∈ 𝑉 \{𝑆}. For each occurrence of 𝐴 on the right hand side of a
rule 𝑅 → 𝑢𝐴𝑣 , we add another rule 𝑅 → 𝑢𝑣 . If 𝑅 → 𝐴 is a rule, then we will add 𝑅 → 𝜖 unless this is a previously removed
rule. This process is repeated until no rules of the form 𝐴→ 𝜖 exist.

Subsequently, we tackle the unit rules. If 𝐴→ 𝐵 is a rule with nonterminals 𝐴, 𝐵 ∈ 𝑉 , then this rule is removed. Whenever
a rule 𝐵 → 𝑢 exists, where𝑢 ∈ (𝑉 ∪Σ)∗, we add another rule𝐴→ 𝑢, unless it has been removed previously. This is repeated
until no unit rules exist.

Finally, for each rule 𝐴→ 𝑢1 · · ·𝑢𝑘 , where 𝑘 ≥ 3 and 𝑢1, · · · , 𝑢𝑘 ∈ (𝑉 ∪ Σ)∗, we convert them to

𝐴→ 𝑢1𝐴1, 𝐴1 → 𝑢2𝐴2, · · · , 𝐴𝑘−2 → 𝑢𝑘−1𝑢𝑘 .

If any 𝑢𝑖 is a terminal, we replace it with a new nonterminal variable 𝑈𝑖 and an additional rule 𝑈𝑖 → 𝑢𝑖 . The resulting
grammar is clearly in Chomsky normal form and is equivalent to 𝐺 . □
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Let’s walk through a concrete example. Consider the following CFG 𝐺 :

𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵
𝐴→ 𝐵 | 𝑆
𝐵 → 𝑏 | 𝜖.

We first add the new start symbol:

𝑆0 → 𝑆

𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵
𝐴→ 𝐵 | 𝑆
𝐵 → 𝑏 | 𝜖.

We now tackle 𝜖 rule:

𝑆0 → 𝑆

𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵 | 𝑎
𝐴→ 𝐵 | 𝑆 | 𝜖
𝐵 → 𝑏.

We also remove 𝐴→ 𝜖 :

𝑆0 → 𝑆

𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆 | 𝑆
𝐴→ 𝐵 | 𝑆
𝐵 → 𝑏.

We now move to the next stage, removing the unit rule 𝑆0 → 𝑆 :

𝑆0 → 𝐴𝑆𝐴 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆

Don’t add this since this was removed!︷︸︸︷
��| 𝑆

𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆 | 𝑆
𝐴→ 𝐵 | 𝑆
𝐵 → 𝑏.

We also remove the unit rule 𝑆 → 𝑆 . Note that nothing needs to be added since the new rules we should add already
exist.

𝑆0 → 𝐴𝑆𝐴 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝐴→ 𝐵 | 𝑆
𝐵 → 𝑏.

Now, we remove 𝐴→ 𝐵:

𝑆0 → 𝐴𝑆𝐴 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝐴→ 𝑏 | 𝑆
𝐵 → 𝑏.
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And we’ll remove 𝐴→ 𝑆 as well.

𝑆0 → 𝐴𝑆𝐴 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝐴→ 𝑏 | 𝐴𝑆𝐴 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝐵 → 𝑏.

Now, there are no more unit rules. We’ll address the 𝐴𝑆𝐴 by breaking it down.

𝑆0 → 𝐴𝐴1 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝑆 → 𝐴𝐴1 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝐴→ 𝑏 | 𝐴𝐴1 | 𝑎𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝐴1 → 𝑆𝐴

𝐵 → 𝑏.

Lastly, we create a special symbol for the single 𝑎, so that

𝑆0 → 𝐴𝐴1 | 𝐴2𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝑆 → 𝐴𝐴1 | 𝐴2𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝐴→ 𝑏 | 𝐴𝐴1 | 𝐴2𝐵 | 𝑎 | 𝑆𝐴 | 𝐴𝑆
𝐴1 → 𝑆𝐴

𝐴2 → 𝑎

𝐵 → 𝑏.

2.2 Pushdown Automata

Our brief investigation of regular languages reveals that this class of languages is captured precisely by finite automata.
Then, for context-free languages, it is natural to ask whether any formal apparatus—a machine like DFAs/NFAs—is equiva-
lent to context-free grammars. We answer this question with a new type of computational model called (non-deterministic)
pushdown automata, or PDAs.

Pushdown automata look similar to NFAswith a notable distinction: PDAs are equippedwith an additional structure, a stack,
that can be used as “scratch paper” to store information. Our first example is the context-free language 𝐿 = {0𝑛1𝑛 | 𝑛 ≥ 0},
recognized by the grammar

𝑆 → 0𝑆1 | 𝜖.

A possible PDA is given as follows.

𝑞1 𝑞2 𝑞3 𝑞4
𝜖, 𝜖 → $

0, 𝜖 → 0

𝜖, 𝜖 → 𝜖

1, 0→ 𝜖

𝜖, $→ 𝜖

The arrows of a PDA are labeled with three parts. Consider the arrow 𝜖, 𝜖 → $ from 𝑞1 to 𝑞2. This means that upon no input
(the first 𝜖), whatever the stack is (the second 𝜖), we are allowed to move to the next state along this arrow, popping nothing
(the second 𝜖) and pushing the symbol $ to the stack. Similarly, the loop arrow 1, 0→ 𝜖 means that upon input 1 and when
the top of the stack is a 0, we can move through this arrow, popping 0 and pushing nothing (𝜖) along the way.

So for the input 0011, we first follow the 𝜖 arrow from 𝑞1 to 𝑞2, pushing a $ to the stack. Then, the two 0’s will be read,
causing the PDA to loop to itself twice, pushing two 0’s consecutively. Then, we follow the 𝜖 arrow to 𝑞3, and then read the
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two 1’s to pop the two 0’s. At this point, we have a $ at the top of the stack, so we move to 𝑞4 and accept the string. Note
that 𝑞1 need not be accepting, and the PDA would still accept the empty string.

As a prototypical example, we’ve seen that this language is not regular. Since every NFA can be easily converted to an
equivalent PDA by changing arrows 𝑎 to arrows 𝑎, 𝜖 → 𝜖 , we know that PDAs are more powerful than NFAs. But PDAs are
still finite! After all, the figure contains finitely many things, so why should we expect PDAs to be more powerful?

Crucially, the stack has unbounded size, which empowers it to recognize languages impossible for NFAs. At any point, the
information that an NFA maintains is from which state(s) it is currently in, of which there is a finite number (namely, 2 |𝑄 | ).
In contrast, the configuration and behavior of PDA is influenced by not only its current state, but its current stack content.
Therefore, while the specification of a PDA remains finite, its possible configurations are not.

Another example is a PDA that recognizes palindromes.

𝑞1 𝑞2 𝑞3 𝑞4
𝜖, 𝜖 → $

𝜎, 𝜖 → 𝜎

𝜖, 𝜖 → 𝜖

𝜎, 𝜖 → 𝜖

1, 0→ 𝜖

𝜖, $→ 𝜖

Here, 𝜎 can be any character in Σ. For example, when Σ = {𝑎, 𝑏, 𝑐}, the loop 𝜎, 𝜖 → 𝜎 is actually three arrows:

𝑎, 𝜖 → 𝑎,

𝑏, 𝜖 → 𝑏,

𝑐, 𝜖 → 𝑐.

When the input is, say, 𝑎𝑏𝑐𝑏𝑎, the first two characters will be pushed on the stack resulting in 𝑏𝑎$ (where left to right is
top to bottom of the stack). The character 𝑐 in the middle is read without modifying the stack, and the last two characters
𝑏𝑎 are read and popped from the stack simultaneously. Ending with a single $ in the stack, we move to 𝑞4 and accept the
string.

We provide a formal definition of PDAs that eliminate possible confusion and ambiguity in the informal diagrammatic
description above.

Definition 2.6. A pushdown automaton (PDA) is a 6-tuple (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐹 ), where

• 𝑄 is a finite set of states;

• Σ is the finite alphabet over which the language of interest is defined;

• Γ is the finite alphabet of stack symbols;

• 𝛿 : 𝑄 × Σ𝜖 × Γ𝜖 → P (𝑄 × Γ𝜖 ) is the transition function;

• 𝑞0 ∈ 𝑄 is the start state;

• 𝐹 ⊆ 𝑄 is the collection of accept states.

The computation of a PDA is slightly more technical than before, though it is quite understandable using the intuition from
the diagrams.

Definition 2.7. A pushdown automaton 𝑃 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐹 ) is said to accept a string 𝑤 ∈ Σ∗ if 𝑤 = 𝑦1 · · ·𝑦𝑚 for some
𝑦1, · · · , 𝑦𝑚 ∈ Σ𝜖 such that there exist a sequence of states 𝑟0, · · · , 𝑟𝑚 ∈ 𝑄 and a sequence of stack content 𝑠0, · · · , 𝑠𝑚 ∈ Γ∗

that satisfies the following: for all 𝑖 ∈ {1, · · · ,𝑚}, there exist 𝑎, 𝑏 ∈ Γ𝜖 such that

• 𝑟0 = 𝑞0 and 𝑠0 = 𝜖 ;
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• (𝑟𝑖 , 𝑏) ∈ 𝛿 (𝑟𝑖−1, 𝑦𝑖 , 𝑎);

• 𝑠𝑖−1 = 𝑎𝑡 and 𝑠𝑖 = 𝑏𝑡 for some 𝑡 ∈ Γ∗;

• 𝑟𝑚 ∈ 𝐹 .

Otherwise, 𝑃 is said to reject𝑤 .

To establish the formal equivalence between PDAs and context-free grammars, we need to show inclusion in both direction.
We start with the easier construction converting a context-free grammar to a pushdown automaton.

Proposition 2.8. The language of any context-free grammar is recognized by some PDA.

Before we proceed with the proof, we introduce a notational shorthand that simplifies our argument. We extend the def-
inition of arrows to allow pushing multiple symbols upon one input character. For instance, we’ll allow arrows labeled
𝑎, 𝜖 → 𝑥𝑦𝑧, implemented by adding intermediate states.

𝑎, 𝜖 → 𝑥𝑦𝑧 𝑎, 𝜖 → 𝑧 𝜖, 𝜖 → 𝑦 𝜖, 𝜖 → 𝑥

Proof. The construction can be summarized as follows:

• Place 𝑆$ on the stack;

• Consider all following cases:

– If the top of the stack is a nonterminal variable, non-deterministically select one possible rule for 𝐴 and replace
the variable with the produced string according to the rule;

– If the top of the stack is a terminal, then read and pop the terminal;

– If the top of the stack is $, then move to an accept state popping $.

Formally, let 𝑃 = (𝑄, Σ, Γ, 𝛿, 𝑞start, {𝑞accept}), where 𝑄 = {𝑞start, 𝑞loop, 𝑞accept} along with possible intermediate states for the
shorthands used, Σ is the set of terminals from the given context-free grammar 𝐺 = (𝑉 , Σ, 𝑅, 𝑆), and Γ = Σ ∪𝑉 ∪ {$}.

We define the transition function 𝛿 as follows, where unspecified inputs are understood as mapped to ∅.

• Let 𝛿 (𝑞start, 𝜖, 𝜖) = {(𝑞loop, 𝑆$)};

• For each nonterminal variable 𝐴 ∈ 𝑉 , let 𝛿 (𝑞loop, 𝜖, 𝐴) = {(𝑞loop,𝑤) | “𝐴→ 𝑤” ∈ 𝑅};

• For each terminal 𝑎 ∈ Σ, let 𝛿 (𝑞loop, 𝑎, 𝑎) = {(𝑞loop, 𝜖)};

• Let 𝛿 (𝑞loop, 𝜖, $) = {(𝑞accept, 𝜖)}.

It is clear that the constructed pushdown automaton 𝑃 recognizes 𝐿(𝐺). For every string 𝑤 accepted by 𝑃 written as
𝑦1, · · · , 𝑦𝑚 with states 𝑟0, · · · , 𝑟𝑚 ∈ 𝑄 (where we omit intermediate states from the shorthand used) and stack content
𝑠0, · · · , 𝑠𝑚 ∈ Γ∗, there is a unique choice of successive yields that derive the string 𝑤 . Similarly, to every derivation of a
string𝑤 accepted by 𝐺 is naturally associated a unique computation of 𝑃 that leads to an accept state. □

The other direction is more sophisticated. We first present the construction of a context-free grammar from a PDA before
justifying its equivalence to the PDA.

Informally, we’re looking for a grammar with variables 𝐴𝑝𝑞 for each pair of states (𝑝, 𝑞) ∈ 𝑄 × 𝑄 , whose associated rule
derives all strings that can take 𝑃 from 𝑝 to 𝑞 with an empty stack before and after. These strings would also take 𝑃 from 𝑝

to 𝑞 even on a non-empty stack, leaving it unchanged, but the converse is not true: a string taking 𝑃 from 𝑝 to 𝑞 in general
could pop stuff from the stack before 𝑝 , so it wouldn’t always work if the stack were empty.
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We’ll assume that 𝑃 has a single accept state𝑞accept and always empties its stack before accepting. The former can be achieved
by adding 𝜖, 𝜖 → 𝜖 arrows to a new, unique accept state and the latter by adding a loop at the accept state dumping all
stack content. Further, we stipulate that transitions would either push a symbol to or pop a symbol from the stack, but not
neither or both. States can be added in an obvious manner to achieve this result. We present the conversion for the PDA
recognizing {0𝑛1𝑛 | 𝑛 ≥ 0}. The PDA

𝑞1 𝑞2 𝑞3 𝑞4
𝜖, 𝜖 → $

0, 𝜖 → 0

𝜖, 𝜖 → 𝜖

1, 0→ 𝜖

𝜖, $→ 𝜖

is converted to

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6
𝜖, 𝜖 → $

0, 𝜖 → 0

1, 0→ 𝜖

1, 0→ 𝜖

𝜖, $→ 𝜖 𝜖, 𝜖 → ⊔

𝜖, 𝜖 → ⊔

𝜖,⊔ → 𝜖

To design the production rule for such an 𝐴𝑝𝑞 , we need to take a look at how it works internally. Suppose 𝑃 takes inputs
𝑥 ∈ Σ∗ from 𝑝 to 𝑞. Note that the first transition of 𝑃 on 𝑥 must push some symbol to the stack, since nothing can be popped
from an empty stack. Similarly, the final transition of 𝑃 on 𝑥 must pop some symbol from the stack to finish with an empty
stack.

There are two possibilities: either the first symbol pushed at state 𝑝 is popped somewhere in the middle or it isn’t popped
until the very end.

• In the former case, the stack will be empty in the middle of the computation when the first symbol pushed is popped.
We use the rule 𝐴𝑝𝑞 → 𝐴𝑝𝑟𝐴𝑟𝑞 , where 𝑟 is the state when the stack first becomes empty during the computation.
Note that we account for the possibility where 𝑝 = 𝑞 = 𝑟 ; we could have 𝐴𝑞𝑞 → 𝐴𝑞𝑞𝐴𝑞𝑞 ;

• In the latter case, we use the rule 𝐴𝑝𝑞 → 𝑎𝐴𝑟𝑠𝑏, where 𝑎, 𝑏 ∈ Σ𝜖 are the inputs read at the first and last transitions
respectively, 𝑟 is the next state of 𝑃 following 𝑝 , and 𝑠 is the previous state of 𝑃 immediately before 𝑞. Note that either
𝑎 or 𝑏 could be 𝜖 , in which case we can discard it from the right hand side of the production rule.

Finally, don’t forget that we always have 𝐴𝑝𝑝 → 𝜖 . Formally, we have the following.

Definition 2.9. Let 𝑃 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐹 ) be a PDA, where we assume without loss of generality that:

• Every transition in 𝛿 either pushes or pops a symbol from the stack, but not either or both; that is,

∀𝑝, 𝑞 ∈ 𝑄, ∀𝑎 ∈ Σ𝜖 , ∀𝑠, 𝑡 ∈ Γ𝜖 , (𝑞, 𝑡) ∈ 𝛿 (𝑝, 𝑎, 𝑠) =⇒ (𝑠 = 𝜖 ⇍⇒ 𝑡 = 𝜖);

• The stack is empty whenever an input string is accepted; that is, given any string 𝑤 ∈ Σ∗ accepted by 𝑃 written as
𝑤 = 𝑦1 · · ·𝑦𝑚 , we have 𝑠𝑚 = 𝜖 ;

• The accept state is unique, which we denote with 𝑞accept; that is, |𝐹 | = 1 and 𝑞accept ∈ 𝐹 .

To each such 𝑃 is associated a context-free grammar 𝐺 (𝑃) B (𝑉 , Σ, 𝑅, 𝑆), where

• 𝑉 = {𝐴𝑝𝑞 | 𝑝, 𝑞 ∈ 𝑄} is the set of nonterminal variables;
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• 𝑅 consists of the following rules:

– For each 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝑄 , 𝑢 ∈ Γ, and 𝑎, 𝑏 ∈ Σ𝜖 , if 𝛿 (𝑝, 𝑎, 𝜖) contains (𝑟,𝑢) and 𝛿 (𝑠, 𝑏,𝑢) contains (𝑞, 𝜖), include the
rule 𝐴𝑝𝑞 → 𝑎𝐴𝑟𝑠𝑏;

– For each 𝑝, 𝑞, 𝑟 ∈ 𝑄 , include 𝐴𝑝𝑞 → 𝐴𝑝𝑟𝐴𝑟𝑞 ;

– For each 𝑝 ∈ 𝑄 , include 𝐴𝑝𝑝 → 𝜖 ;

• 𝑆 = 𝐴𝑞0𝑞accept .

Let’s consider a PDA recognizing the set of balanced parentheses where the left parenthesis is denoted as 0 and the right
parenthesis as 1.

𝑞1 𝑞2 𝑞3
𝜖, 𝜖 → $

0, 𝜖 → 0

1, 0→ 𝜖

𝜖, $→ 𝜖

We’ll consider all pairs of states 𝑝, 𝑞 ∈ 𝑄 , of which there are 9.

• (𝑝, 𝑞) = (𝑞1, 𝑞1): 𝐴𝑞1𝑞1 → 𝜖 ;

• (𝑝, 𝑞) = (𝑞1, 𝑞2): No associated rule;

• (𝑝, 𝑞) = (𝑞1, 𝑞3): 𝐴𝑞1𝑞3 → 𝐴𝑞2𝑞2 ;

• (𝑝, 𝑞) = (𝑞2, 𝑞1): No associated rule;

• (𝑝, 𝑞) = (𝑞2, 𝑞2): 𝐴𝑞2𝑞2 → 0𝐴𝑞2𝑞21 | 𝐴𝑞2𝑞2𝐴𝑞2𝑞2 | 𝜖 ;

• (𝑝, 𝑞) = (𝑞2, 𝑞3): No associated rule;

• (𝑝, 𝑞) = (𝑞3, 𝑞1): No associated rule;

• (𝑝, 𝑞) = (𝑞3, 𝑞2): No associated rule;

• (𝑝, 𝑞) = (𝑞3, 𝑞3): 𝐴𝑝3𝑝3 → 𝜖 .

The starting nonterminal variable is 𝐴𝑞1𝑞3 , which can be replaced by 𝐴𝑞2𝑞2 . In other words, this is the grammar 𝑆 →
0𝑆1 | 𝑆𝑆 | 𝜖 , which we know recognizes balanced parentheses.

To demonstrate the validity of this construction, we first validate the intended purpose of 𝐴𝑝𝑞 .

Proposition 2.10. Let 𝑃 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐹 ) be a PDA and suppose 𝑝, 𝑞 ∈ 𝑄 . Then, if 𝐴𝑝𝑞 derives 𝑥 ∈ Σ∗ in the grammar
𝐺 (𝑃), then 𝑥 can bring 𝑃 from 𝑝 with an empty stack to 𝑞 with an empty stack.

Proof. We perform induction on the number of derivation steps from 𝐴𝑝𝑞 to 𝑥 .

Base case. Suppose the derivation has 1 step. By construction, the only possibility is the rule 𝐴𝑝𝑝 → 𝜖 when 𝑝 = 𝑞. It is
obvious that 𝜖 trivially satisfies the desired property.

Inductive case. Suppose the derivation has (𝑘 + 1) steps and assume by induction that the Proposition holds for all
derivations from 𝐴𝑝𝑞 to 𝑥 of at most 𝑘 steps, where 𝑘 ≥ 1. There are two cases for the first step:
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(i) The first step uses the rule 𝐴𝑝𝑞 → 𝑎𝐴𝑟𝑠𝑏 with the symbol 𝑢 ∈ Γ, where 𝑟, 𝑠 ∈ 𝑄 and 𝑎, 𝑏 ∈ Σ𝜖 . Then 𝑥 = 𝑎𝑥𝑏 for some
𝑥 ∈ Σ∗. Since 𝐴𝑟𝑠 can be derived in at most 𝑘 steps, 𝑥 will take 𝑃 from 𝑟 with an empty stack to 𝑠 with an empty
stack. Then, when the stack contains the sole symbol 𝑢, 𝑎𝑥𝑏 will first push 𝑢 to the stack, derive 𝑥 , and pop 𝑢 finally.
Therefore, 𝑥 takes 𝑃 from 𝑝 with an empty stack to 𝑞 with an empty stack.

(ii) The first step uses the rule 𝐴𝑝𝑞 → 𝐴𝑝𝑟𝐴𝑟𝑞 for some 𝑟 ∈ 𝑄 . Suppose 𝑥 = 𝑤𝑧, where 𝑤, 𝑧 ∈ Σ∗ are derived from 𝐴𝑝𝑟

and𝐴𝑟𝑞 respectively. Since each of𝐴𝑝𝑟 and𝐴𝑟𝑞 can be derived in at most 𝑘 steps,𝑤 will take 𝑃 from 𝑝 with an empty
stack to 𝑟 with an empty stack. Subsequently, 𝑧 will take 𝑃 from 𝑟 with an empty stack to 𝑞 with an empty stack.
Therefore, 𝑥 = 𝑤𝑧 will take 𝑃 from 𝑝 with an empty stack to 𝑞 with an empty stack.

Note that the case where 𝑝 = 𝑞 and 𝐴𝑝𝑝 → 𝜖 is impossible for the inductive case, since this requires exactly 1 step but
𝑘 + 1 ≥ 2. The proof is now complete. □

We also need to justify the other direction, using a similar induction argument. But first, we present a simple lemma, which
states that all computations of the “restricted” PDA has an even number of transitions.

Lemma 2.11. Suppose 𝑃 is a PDA of the special form in Definition 2.9 and𝑤 ∈ 𝐿(𝑃) is accepted by 𝑃 with 𝑘 ≥ 0 transitions.
Then, 𝑘 is even.

Proof. Let ℎ0, · · · , ℎ𝑘 ∈ Z≥0 be the stack heights between transitions. Because each transition either pushes or pops a stack
symbol, we have either ℎ𝑖−1 − 1 = ℎ𝑖 or ℎ𝑖−1 + 1 = ℎ𝑖 for 𝑖 ∈ {1, · · · , 𝑘}. Therefore, each transition toggles the parity of ℎ𝑖 .
Suppose on the contrary that 𝑘 is odd. Then, because ℎ0 = 0, ℎ𝑘 is odd after odd toggles of parity. However, ℎ𝑘 = 0 is even,
a contradiction. Hence, 𝑘 is even. □

Proposition 2.12. Let 𝑃 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐹 ) be a PDA and suppose 𝑝, 𝑞 ∈ 𝑄 . Then, if 𝑥 ∈ Σ∗ can bring 𝑃 from 𝑝 with an
empty stack to 𝑞 with an empty stack in the grammar 𝐺 (𝑃), then 𝐴𝑝𝑞 can derive 𝑥 .

Proof. We perform induction on the number of transitions in the computation of 𝑃 from 𝑝 to 𝑞 with an empty stack before
and after the input 𝑥 .

Base case. Suppose the computation has 0 transitions from 𝑝 to 𝑝 , where 𝑝 ∈ 𝑄 . Then, the string 𝜖 is accepted without
any stack operations. Indeed, the construction includes the rule 𝐴𝑝𝑝 → 𝜖 .

Inductive case. Suppose now that the computation has (𝑘 +1) transitions from 𝑝 to 𝑞, where 𝑝, 𝑞 ∈ 𝑄 and 𝑘 ≥ 0. Assume
by induction that the Proposition holds for all 𝑥 whose associated computation has at most 𝑘 transitions. Because (𝑘+1) ≥ 1
is even by Lemma 2.11, (𝑘 + 1) ≥ 2. Let 𝑢, 𝑣 ∈ Γ be the first symbol pushed and the last symbol popped respectively. There
are two possibilities:

(i) The stack is never empty except at the beginning and the end of the computation. That is, the symbol 𝑢 at the bottom
of the stack isn’t popped until the last transition. We split 𝑥 into 𝑎𝑤𝑏, where 𝑎, 𝑏 ∈ Σ𝜖 are the inputs read at the first
and last transitions and 𝑤 ∈ Σ∗. Suppose during the computation that 𝑎 takes 𝑃 from 𝑝 to 𝑟 ∈ 𝑄 in the beginning
and 𝑏 takes 𝑃 from 𝑠 ∈ 𝑄 to 𝑞. Then, since the stack is never emptied during the transitions from 𝑟 to 𝑠 , the string 𝑤
would also take 𝑃 from 𝑟 with an empty stack to 𝑠 with an empty stack. Hence, by the induction hypothesis, 𝐴𝑟𝑠 can
derive𝑤 . Indeed, the construction includes the rule 𝐴𝑝𝑞 → 𝑎𝐴𝑟𝑠𝑏, so 𝐴𝑝𝑞 can derive 𝑎𝑤𝑏 = 𝑥 .

(ii) The stack is emptied during some intermediate transition. Let 𝑟 ∈ 𝑄 be the state immediately after the first transition
that empties the stack, where 𝑟 ≠ 𝑞. Split 𝑥 into 𝑤𝑧, where 𝑤 ∈ Σ∗ is read for the transitions from 𝑝 to 𝑟 and 𝑧 ∈ Σ∗

from 𝑟 to 𝑞. Then,𝑤 takes 𝑃 from 𝑝 with an empty stack to 𝑟 with an empty stack, and 𝑧 takes 𝑃 from 𝑟 with an empty
stack to 𝑞 with an empty stack. By the induction hypothesis, then, 𝐴𝑝𝑟 can derive𝑤 and𝐴𝑟𝑞 can derive 𝑧. Indeed, the
construction includes the rule 𝐴𝑝𝑞 → 𝐴𝑝𝑟𝐴𝑟𝑞 , so 𝐴𝑝𝑞 can derive𝑤𝑧 = 𝑥 .

This concludes the proof by induction. □
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Note that the lemma above is a bit stronger than necessary for the purpose of this proof. One can note that such PDAs must
push at the first transition and pop at the last; the transitions must therefore be distinct.

Corollary 2.13. The language of any PDA is recognized by some context-free grammar.

Proof. Let 𝑃 be a PDA. From Propositions 2.10 and 2.12, we conclude that the grammar𝐺 (𝑃) with the start symbol𝐴𝑝0𝑝accept

accepts exactly the strings that take 𝑃 from 𝑝0 to 𝑝accept from an empty stack to an empty stack, which by assumption covers
all possible accepted strings. Therefore, 𝐿(𝐺 (𝑃)) = 𝐿(𝑃). □

Corollary 2.14. Every regular language is context-free.

Proof. Observe that any DFA can be converted to an equivalent PDA with no use of the stack, and any PDA has a corre-
sponding equivalent context-free grammar. Therefore, every regular language has an equivalent context-free grammar. □

2.3 Non-Context-Free Languages

As powerful as context-free grammars are, there are still languages that seem quite straightforward and simple but that
cannot be recognized by any context-free grammars. Similar to regular languages, context-free languages also admit a
pumping lemma that can be used to show certain languages cannot be context-free.

Lemma 2.15 (Pumping Lemma for Context-Free Languages). Suppose 𝐴 is a context-free language over Σ. Then, there
exists some 𝑝 > 0 such that for all𝑤 ∈ 𝐿(𝐴) with |𝑤 | ≥ 𝑝 , there exists 𝑢, 𝑣, 𝑥,𝑦, 𝑧 ∈ Σ∗ with𝑤 = 𝑢𝑣𝑥𝑦𝑧 such that

• For all 𝑖 ≥ 0, 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐿(𝐴);

• |𝑣𝑦 | > 0;

• |𝑣𝑥𝑦 | ≤ 𝑝 .

Proof. Let 𝑏 be the maximum number of nonterminal and terminal symbols on the right-hand side of any rule. If 𝑏 = 0,
then the language of the grammar is finite. The pumping lemma is trivially satisfied by choosing a 𝑝 longer than any string
recognized by 𝐺 . We hereafter suppose 𝑏 ≥ 2. No node has more than 𝑏 children in any parse tree of the grammar, so any
parse tree of height ℎ yields a string of length at most 𝑏ℎ . Conversely, any string of length at least 𝑏ℎ + 1 has parse tree of
height at least ℎ + 1.

Let 𝑝 = 𝑏 |𝑉 |+1. For any𝑤 ∈ Σ∗ where |𝑤 | ≥ 𝑝 , any parse tree for𝑤 has height at least |𝑉 | + 1. We fix an arbitrary parse tree
with the fewest number of nodes. The longest path from the root 𝑆 to a terminal leaf is at least |𝑉 | + 1 long and contains at
least |𝑉 | + 1 nonterminal variables, some of which must repeat. Let 𝑅 be a variable repeated in the lowest |𝑉 | + 1 variables
along the path. Let 𝑤 = 𝑢𝑣𝑥𝑦𝑧 such that 𝑣𝑥𝑦 is the substring derived from the upper occurrence of 𝑅 in the repetition and
𝑥 from the lower. Because both 𝑣𝑥𝑦 and 𝑥 are derived by 𝑅, we may replace the sub-parse tree for the lower occurrence for
the upper occurrence, resulting in a valid parse tree for the grammar that yields 𝑢𝑥𝑧. Similarly, we may replace the upper
occurrence for the lower, which yields 𝑢𝑣2𝑥𝑦2𝑧—and this process can be done inductively to yield any 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 whenever
𝑖 ≥ 2. This concludes the first item.

To rule out the possibility 𝑣 = 𝑦 = 𝜖 , note that this would imply the substitution of the subtree rooted at the lower 𝑅 for the
upper results yields the same string𝑤 with fewer nodes. This is impossible as we have chosen a parse tree with the fewest
number of nodes.

Lastly, the upper subtree generating 𝑣𝑥𝑦 has height at most |𝑉 | + 1. Because no node has more than 𝑏 children, the string
𝑣𝑥𝑦 has length no more than 𝑏 |𝑉 |+1 = 𝑝 . □

We still use the pumping lemma for context-free languages in similar to tackling regular languages. The proof becomes
more technical as there are more potential cases to consider.
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A prototypical example is 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0}, which is not context-free. Applying the lemma above, suppose the contrary
and fix the pumping length 𝑝 > 0. Consider 𝑤 = 𝑎𝑝𝑏𝑝𝑐𝑝 ∈ 𝐿 which has length |𝑤 | = 3𝑝 ≥ 𝑝 . Hence, 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where
𝑢𝑥𝑧 ∈ 𝐿, |𝑣𝑦 | > 0, and |𝑣𝑥𝑦 | ≤ 𝑝 . Now, consider a sliding window of length at most 𝑝 , which will be the location of the
substring 𝑣𝑥𝑦 in the break-up. There are 5 possibilities:

• The window contains only 𝑎’s. Because |𝑣𝑦 | > 0, the string 𝑥 has fewer 𝑎’s than 𝑣𝑥𝑦, so the string 𝑢𝑥𝑧 ∈ 𝐿 has
fewer 𝑎’s than 𝑏’s and 𝑐’s, which is impossible.

• The window contains 𝑎’s and 𝑏’s. Similarly, pumping down reduces the numbers of 𝑎’s, 𝑏’s, or both. The number
of 𝑐’s will be greater than that of either 𝑎’s or 𝑏’s, a contradiction.

• The window contains only 𝑏’s. The same as case I.

• The window contains 𝑏’s and 𝑐’s. The same as case II.

• The window contains only 𝑐’s. The same as case I.

3 The Church–Turing Thesis

3.1 Turing Machines

As we have last seen, languages as simple as {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0} cannot be recognized by context-free grammars (much less
regular languages)! What additions do we need exactly to recover the computational power of everyday computers with
which we have become so familiar?

The construction of a Turing machine, introduced by AlanM. Turing, achieves precisely this. Similar to PDAs, a TM also has
an additional storage device, but it is more powerful: rather than a stack which can only be modified at one fixed location
and which the PDA can only interact with upon each input character, a TM has an unbounded tape with a head that it can
freely move around. But differently, the moves are decoupled from input characters. Instead, the tape indexed by Z>0 from
left to right starts with the input string flushed left and the head on the first input character. The TM transitions based on
the current tape symbol and its current state to the next state, a symbol to overwrite the current one at the head position,
and an instruction to move the head either left or right.

Definition 3.1. A Turing machine (TM) is a 7-tuple (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject) where

• 𝑄 is a finite set of states;

• Σ is a finite set of alphabet which does not contain the reserved empty symbol ⊔;

• Γ is a finite set of tape symbols such that {⊔} ∪ Σ ⊆ Γ;

• 𝛿 : 𝑄 × Γ → 𝑄 × Γ → {L, R};

• 𝑞0, 𝑞accept, 𝑞reject ∈ 𝑄 are the start, accept, and reject states where 𝑞accept ≠ 𝑞reject.

Now, we formalize the computation of TMs as well. Note first that at any intermediate step of the computation of a Turing
machine, the tape contains at most finitely many non-empty tape symbols. This allows us to write the complete state of a
Turing machine as follows.

Definition 3.2. Aconfiguration of a Turingmachine𝑇 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject) is a string of the form 𝑠1 · · · 𝑠𝑚𝑞𝑟1 · · · 𝑟𝑛 ,
where 𝑠1, · · · , 𝑠𝑚, 𝑟1, · · · , 𝑟𝑛−1 ∈ Γ, 𝑟𝑚 ∈ Γ\{⊔}, and𝑞 ∈ 𝑄 . The configuration denotes the complete state of a Turing machine
with tape content (𝑠1, · · · , 𝑠𝑚, 𝑟1, · · · , 𝑟𝑛,⊔,⊔, · · · ), the current state 𝑞, and the head at 𝑟1 immediately following 𝑞 in the
string.

We now define a “yields” relation that describes each computational step of a TM.

Definition 3.3. Suppose 𝑇 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject) is a Turing machine.
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• The configuration 𝑢𝑎𝑞𝑖𝑏𝑣 is said to yield 𝑢𝑞 𝑗𝑎𝑐𝑣 , where 𝑢, 𝑣 ∈ Γ∗, 𝑎, 𝑏, 𝑐 ∈ Γ, and 𝑞𝑖 , 𝑞 𝑗 ∈ 𝑄 , if 𝛿 (𝑞𝑖 , 𝑏) = (𝑞 𝑗 , 𝑐, L);

• The configuration 𝑢𝑎𝑞𝑖𝑏𝑣 is said to yield 𝑢𝑎𝑐𝑞 𝑗𝑣 , where 𝑢, 𝑣 ∈ Γ∗, 𝑎, 𝑏, 𝑐 ∈ Γ, and 𝑞𝑖 , 𝑞 𝑗 ∈ 𝑄 , if 𝛿 (𝑞𝑖 , 𝑏) = (𝑞 𝑗 , 𝑐, R);

• The configuration 𝑞𝑖𝑎𝑣 is said to yield 𝑞 𝑗𝑏𝑣 , where 𝑣 ∈ Γ∗, 𝑎, 𝑏 ∈ Γ, and 𝑞𝑖 , 𝑞 𝑗 ∈ 𝑄 , if 𝛿 (𝑞𝑖 , 𝑎) = (𝑞 𝑗 , 𝑏, L);

• The configuration 𝑞𝑖𝑎𝑣 is said to yield 𝑏𝑞 𝑗𝑣 , where 𝑣 ∈ Γ∗, 𝑎, 𝑏 ∈ Γ, and 𝑞𝑖 , 𝑞 𝑗 ∈ 𝑄 , if 𝛿 (𝑞𝑖 , 𝑎) = (𝑞 𝑗 , 𝑏, R).

We now state some common configurations.

Definition 3.4. Suppose 𝑇 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject) is a Turing machine. The start configuration of 𝑇 on an input
string 𝑤 ∈ Σ∗ is the configuration 𝑞0𝑤 . Any configuration with state 𝑞accept is said to be an accepting configuration. Any
configuration with state 𝑞reject is said to be a rejecting configuration.

This provides adequate machinery for defining the computation of a Turing machine.

Definition 3.5. Suppose 𝑇 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject) is a Turing machine. 𝑇 is said to accept 𝑤 ∈ Σ∗ if there exists a
sequence of configurations 𝐶1, · · · ,𝐶𝑘 where

• 𝐶1 is the start configuration of 𝑇 on𝑤 ;

• For each 𝑖 = 1, · · · , 𝑘 − 1, 𝐶𝑖 yields 𝐶𝑖+1;

• 𝐶𝑘 is an accepting configuration.

The collection of all string accepted by 𝑇 is defined as the language recognized by 𝑇 , denoted as 𝐿(𝑇 ).

Note that there are two ways a Turing machine fails to accept a string: either it enters into a rejecting configuration and
halts, or it somehow “loops” forever. We quantify the latter behavior more specifically.

Definition 3.6. ATuringmachine𝑇 is said to halt on on input𝑤 ∈ Σ∗ if there exists a sequence of configurations𝐶1, · · · ,𝐶𝑘

where

• 𝐶1 is the start configuration of 𝑇 on𝑤 ;

• For each 𝑖 = 1, · · · , 𝑘 − 1, 𝐶𝑖 yields 𝐶𝑖+1;

• 𝐶𝑘 is an accepting or rejecting configuration;

in other words, 𝑇 decides whether𝑤 ∈ 𝐿(𝑇 ) in a finite number of steps.

Definition 3.7. A Turing machine 𝑇 is said to be a decider it halts on all possible inputs𝑤 ∈ Σ∗.

Definition 3.8. A language is said to be recognizable, or recursively enumerable, if a Turing machine recognizes it. A
language is said to be decidable, or recursive, if a Turing machine decides it.

It turns out no conceivable and reasonable model of computation is more powerful than Turing machines; that is, Turing
machines are the most powerful models of computers theoretically possible. TheTheory of Computation, then, concerns the
fundamental possibilities and limitations of such theoretical computers. The question, ”Are there any problems computers
(TMs) can’t solve?” gave rise to the field of computability, and the question ”How long does a computer (TM) need to solve
a problem?” birthed complexity theory.

Here, we give an explicit example of a Turing machine. Consider the language𝐴 = {02𝑛 | 𝑛 ≥ 0} over the singleton alphabet
{0}. We construct a TM 𝑇 that works as follows. For an input string𝑤 ,

1. Replace the current (first) symbol with ¤0;

2. Cross off every other 0 symbol by replacing ¤0 with ��¤0 and 0 with �0. If there is only exactly one 0, accept; if after
sweeping through the tape we find an odd number of 0’s, reject;
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3. Return to the dotted symbol, which is the beginning of the tape;

4. Go to step 2 and repeat.

A formal description would be extremely verbose, reproduced as follows from Figure 3.8 of [1].

We provide another Turing machine does some arithmetic by deciding the language {𝑎𝑖𝑏 𝑗𝑐𝑘 | 𝑎, 𝑏, 𝑐 ≥ 1 and 𝑎𝑏 = 𝑐}. For
an input string𝑤 ,

1. Mark the first character with a dot; that is, replacing 𝑎 with ¤𝑎, 𝑏 with ¤𝑏, and 𝑐 with ¤𝑐;

2. Scan through𝑤 and check if𝑤 matches 𝑎+𝑏+𝑐+;

3. Return to the leftmost cell of the tape as marked earlier;

4. Cross off an 𝑎 (whether or not marked) by replacing 𝑎 with �𝑎 and ¤𝑎 with �¤𝑎 and move right until the first 𝑏 occurs;

5. Cross off the current 𝑏, and move right to the first 𝑐 not yet crossed off;

6. Cross off the current 𝑐 , and move left to the first 𝑏 not yet crossed off;

7. Go to stage 5 if no 𝑏’s remain. Then, restore all 𝑏’s crossed off. Move to leftmost 𝑎’s not marked off and go to stage 4.
If no such 𝑎’s exist, then accept if no 𝑐’s remain and reject otherwise. Reject also if any operation at any stage above
is impossible to perform.

3.2 Variants of Turing Machines

Some parts of the definition of a Turing machine seems arbitrary. Can a TM choose not to move Left or Right but just stay
put? Why is one end unbounded but the other bounded in the tape? Why can’t we have more tapes, finitely many, or
(countably) infinitely many? What about non-determinism? It turns out that all these questions can be answered affirma-
tively: any such addition does not allow Turing machines to recognize more languages. This is why we call the definition
of computability, or recognizability, robust: reasonable changes or extensions to some parts of a definition do not modify
the scope of the definition.

A Turing machine that stays put at a certain step can be simulated by adding an intermediate state to simulate moving left
and then moving right. A Turing machine with an unbounded tape can be done by considering a particular “computable”
bijection from Z>0 to Z such as 𝜙 : 𝑛 ↦→ (−1)𝑛 ⌊𝑛/2⌋. Such a function 𝜙 can easily be computed with a Turing machine, so
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we can always convert a two-way-unbounded Turing machine with an ordinary one by thinking about which cell to use
with the bijection 𝜙 .

We investigate the idea of multi-tape Turing machines a little more closely. A multi-tape Turing machine has all the com-
ponents of an ordinary Turing machine: 𝑄 , Σ, Γ, 𝛿 , 𝑞0, 𝑞accept, and 𝑞reject. The core distinction is that given 𝑘 ≥ 1 tape(s), we
now have 𝛿 : 𝑄 × Σ𝑘 → 𝑄 × Σ𝑘 × {𝐿, 𝑅, 𝑆}𝑘 . Specifically,

• The input to the machine is copied onto the first tape flushed left;

• Each tape is attached to a head, all of which work independently.

• Themachine may transition between states by reading the current characters on all tapes, replacing them respectively
on each tape, and moving to the Left or the Right, or Staying put on each tape separately.

Are they anyhow more powerful than ordinary Turing machines? It turns out not.

Proposition 3.9. Suppose 𝑘 ∈ Z>0. Then, every 𝑘-tape Turing machine has an equivalent ordinary Turing machine.

Figure 3.14 from [1].

The proof idea is as follows. Let 𝐾 be an arbitrary 𝑘-tape Turing machine. We construct a Turing machine 𝑇 whose input
𝑤 = 𝑤1 · · ·𝑤𝑛 , where𝑤1, · · · ,𝑤𝑛 ∈ Σ, is stored on the tape initially as

“# ¤𝑤1 · · ·𝑤𝑛 # ¤⊔ # · · · # ⊔ #′′,

where there are 𝑘 copies of ⊔’s separated by #.

The dotted positions in 𝑇 will represent the current head positions of 𝐾 . For each transition of 𝐾 , we first scan through all
tape content stored on𝑇 and copy them after the final #. Then, transition to the corresponding state according to the scratch
cells for the tape symbols at the current heads of 𝐾 . Finally, go over the tape again and modify the current tape symbols
before moving the dotted positions.

If at any point 𝑇 moves right to a #, then we pause further operations and first move all subsequent content, up to and
including the current #, to the right by one cell, which allocates an empty space dynamically for 𝑇 at the current tape. The
pending operations now proceed as normal.

This shows that multi-tape Turing machines are no more powerful than ordinary Turing machines.

Corollary 3.10. Multi-tape Turing machines recognize the same class of languages as Turing machines.
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