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1 Preliminaries

Definition 1.1. A field is a set F equipped with two operations +, · : F× F→ F that satisfy the following: There exist 0 ∈ F
and 1 ∈ F such that

• (Commutativity) ∀𝑎, 𝑏 ∈ F, 𝑎 + 𝑏 = 𝑏 + 𝑎 ∧ 𝑎 · 𝑏 = 𝑏 · 𝑎;

• (Associativity) ∀𝑎, 𝑏, 𝑐 ∈ F, (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) ∧ (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐);

• (Identity) ∀𝑎 ∈ F, 𝑎 + 0 = 𝑎 · 1 = 𝑎;

• (Inverse) ∀𝑎 ∈ F, (∃𝑏 ∈ F, 𝑎 + 𝑏 = 0) ∧ (𝑎 ≠ 0⇒ ∃𝑏 ∈ F, 𝑎 · 𝑏 = 1);

• (Distributivity) ∀𝑎, 𝑏, 𝑐 ∈ F, 𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐 .

By the way, some people explicitly state the closure property of + and ·, but we don’t need that since we already said
+, · : F × F→ F.

Before we introduce vectors, we’ll define some structures to work with.

Definition 1.2. Given a field F, the set F𝑛 is defined as the collection of all 𝑛-tuples with components in F; that is,

F𝑛 B {(𝑥1, · · · , 𝑥𝑛) | 𝑥1, · · · , 𝑥𝑛 ∈ F}.

We equip the set with two operations, +, · : F𝑛 × F𝑛 → F𝑛 , defined as follows:

(𝑥1, · · · , 𝑥𝑛) + (𝑦1, · · · , 𝑦𝑛) B (𝑥1 + 𝑦1, · · · , 𝑥𝑛 + 𝑦𝑛),
𝑐 · (𝑥1, · · · , 𝑥𝑛) B (𝑐 · 𝑥1, · · · , 𝑐 · 𝑥𝑛),

where 𝑐, 𝑥1, · · · , 𝑥𝑛, 𝑦1, · · · , 𝑦𝑛 ∈ F.

Definition 1.3. Given a field F, the set P (F) ⊂ FF is defined as the collection of all polynomials from F to F; that is,

P (F) B
∞⋃
𝑛=0
{𝜆𝑥 .(𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑛𝑥𝑛) | 𝑎0, · · · , 𝑎𝑛 ∈ F}.

We equip the set with two operations, +, · : P (F) × P (F) → P (F), defined as follows:

𝑓 + 𝑔 B 𝜆𝑥.(𝑓 (𝑥) + 𝑔(𝑥)),
𝑐 · 𝑓 B 𝜆𝑥.(𝑐 · 𝑓 (𝑥)),

where 𝑓 , 𝑔 ∈ P (F) and 𝑐 ∈ F.

A nonzero polynomial 𝑓 ∈ P (F)\{𝜆𝑥 .0} is said to have degree 𝑛 if there exists 𝑎0, · · · , 𝑎𝑛 ∈ F with 𝑎𝑛 ≠ 0 such that

∀𝑥 ∈ F, 𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑛𝑥𝑛 .
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The zero polynomial 𝜆𝑥.0 is said to have degree negative infinity. Note that all polynomials have a unique degree, which
then defines the function deg : P (F) → {−∞} ∪ Z≥0 that maps a polynomial to its degree.

Given an arbitrary 𝑛 ∈ Z≥0, the set P𝑛 (F) is defined as the subset of P (F) of all polynomials with degree at most 𝑛. Clearly,
P (F) and any P𝑛 (F) are vector spaces.

2 Vector Spaces

Definition 2.1. A vector space over a field F is a set 𝑉 equipped with two operations + : 𝑉 × 𝑉 → 𝑉 and · : F × 𝑉 → 𝑉

that satisfy the following: there exist 0 ∈ 𝑉 such that

• ∀𝑢, 𝑣 ∈ 𝑉 ,𝑢 + 𝑣 = 𝑣 + 𝑢;

• ∀𝑢, 𝑣,𝑤 ∈ 𝑉 , (𝑢 + 𝑣) +𝑤 = 𝑢 + (𝑣 +𝑤);

• ∀𝑣 ∈ 𝑉 , 𝑣 + 0 = 𝑣 ;

• ∀𝑣 ∈ 𝑉 , ∃𝑤 ∈ 𝑉 , 𝑣 +𝑤 = 0;

• ∀𝑣 ∈ 𝑉 , 1 · 𝑣 = 𝑣 ;

• ∀𝑎, 𝑏 ∈ F,∀𝑣 ∈ 𝑉 , 𝑎 · (𝑏 · 𝑣) = (𝑎 · 𝑏) · 𝑣 ;

• ∀𝑎, 𝑏 ∈ F,∀𝑣 ∈ 𝑉 , (𝑎 + 𝑏) · 𝑣 = 𝑎 · 𝑣 + 𝑏 · 𝑣 ;

• ∀𝑎 ∈ F,∀𝑢, 𝑣 ∈ 𝑉 , 𝑎 · (𝑢 + 𝑣) = 𝑎 · 𝑢 + 𝑎 · 𝑣 .

Note that the symbol 0 can be the additive identity either from the field or from the vector space, which can usually be
inferred from context.

Here are some claims.

Proposition 2.2. Given a vector space 𝑉 over F, the additive identity 0 is unique.

Proof. Suppose 01, 02 ∈ 𝑉 are both satisfy the properties of 0 in Definition 2.1. Then,

01 = 01 + 02 = 02.

The proof is finished. □

The use of the symbol 0 without additional setup/condition in a vector space is now justified.

Proposition 2.3. Given a vector space 𝑉 over F and an arbitrary 𝑣 ∈ 𝑉 , the additive inverse is unique.

Proof. Suppose𝑤1,𝑤2 ∈ 𝑉 are such that 𝑣 +𝑤1 = 𝑣 +𝑤2 = 0. Then,

𝑤1 + 𝑣 +𝑤1 = 𝑤1 + 𝑣 +𝑤2 ⇒ 𝑤1 = 𝑤2.

The proof is complete. □

We therefore introduce the notation −𝑣 to represent the additive inverse of 𝑣 ∈ 𝑉 , where 𝑉 is a vector space.

Proposition 2.4. Given a vector space 𝑉 over F and an arbitrary 𝑣 ∈ 𝑉 , 0 · 𝑣 = 0.

Proof. We have 0 · 𝑣 + 0 · 𝑣 = (0 + 0) · 𝑣 = 0 · 𝑣 . Then, −(0 · 𝑣) + 0 · 𝑣 + 0 · 𝑣 = −(0 · 𝑣) + 0 · 𝑣 , and hence 0 · 𝑣 = 0. □

Proposition 2.5. Given a vector space 𝑉 over F and an arbitrary 𝑎 ∈ F, 𝑎 · 0 = 0.
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Proof. We have 𝑎 · 0 + 𝑎 · 0 = 𝑎 · (0 + 0) = 𝑎 · 0. Then, −(𝑎 · 0) + 𝑎 · 0 + 𝑎 · 0 = −(𝑎 · 0) + 𝑎 · 0, and hence 𝑎 · 0 = 0. □

Proposition 2.6. Given a vector space 𝑉 over F and an arbitrary 𝑣 ∈ 𝑉 , −𝑣 = (−1) · 𝑣 .

Proof. Observe that 0 = (−1 + 1) · 𝑣 = (−1) · 𝑣 + 1 · 𝑣 = (−1) · 𝑣 + 𝑣 . By the uniqueness of the additive inverse, we have
−𝑣 = (−1) · 𝑣 . □

A subspace is a subset that is also a vector space in its own right. Intuitively, it has to have that “linear” structure. For
example, any line or plane through the origin is a subspace of R3.

Definition 2.7. Given a vector space𝑉 over F and a subset𝑈 ⊆ 𝑉 ,𝑈 is said to be a subspace of𝑉 if the images +(𝑈 ×𝑈 ) ⊆ 𝑈

and ·(F ×𝑈 ) ⊆ 𝑈 .

We will define the sum of subspaces of a vector space, which is really similar to “spanning.” For example, any two distinct
lines through the origin in R2 are subspaces whose sum is R2.

Definition 2.8. Suppose 𝑉 is a vector space over F and𝑈 ,𝑊 ⊆ 𝑉 are subspaces of 𝑉 . Then, the sum of𝑈 and𝑊 , denoted
as𝑈 +𝑊 , is defined as the set

𝑈 +𝑊 B {𝑢 +𝑤 | 𝑢 ∈ 𝑈 ,𝑤 ∈𝑊 }.

It is clear that the sum of subspaces is commutative and associative. The second property allows us to write things like
𝑈1 +𝑈2 +𝑈3 without the use of auxiliary parentheses since the resultant sum is always the same regardless of the order of
addition.

Proposition 2.9. Suppose 𝑉 is a vector space over F and𝑈 ,𝑊 ⊆ 𝑉 are subspaces of 𝑉 . Then,𝑈 +𝑊 is a subspace of 𝑉 .

Proof. Let 𝑣1, 𝑣2 ∈ 𝑈 +𝑊 and 𝑐 ∈ F. Fix 𝑢1, 𝑢2 ∈ 𝑈 and𝑤1,𝑤2 ∈𝑊 such that 𝑣1 = 𝑢1 +𝑤1 and 𝑣2 = 𝑢2 +𝑤2. Then,

𝑣1 + 𝑣2 = 𝑢1 +𝑤1 + 𝑢2 +𝑤2 = 𝑢1 + 𝑢2︸ ︷︷ ︸
∈𝑈

+𝑤1 +𝑤2︸   ︷︷   ︸
∈𝑊

∈ 𝑈 +𝑊 .

Similarly,
𝑐 · 𝑣1 = 𝑐 · (𝑢1 +𝑤1) = 𝑐 · 𝑢1︸︷︷︸

∈𝑈

+ 𝑐 ·𝑤1︸︷︷︸
∈𝑊

∈ 𝑈 +𝑊 .

The proof is complete. □

When we had the earlier example of two lines, we see that they’re both necessary in the sense that removing any would
cause the sum to “collapse,” much like the linear independence of vectors to be introduced later. It’s captured in essentially
the same way:

Definition 2.10. Suppose 𝑉 is a vector space over F and 𝑈1, · · · ,𝑈𝑘 ⊆ 𝑉 are subspaces of 𝑉 . Then, 𝑈1 + · · · +𝑈𝑘 is said to
be a direct sum if for any 𝑣 ∈ 𝑈1 + · · · +𝑈𝑘 , there exists a unique (𝑢1, · · · , 𝑢𝑘 ) ∈ 𝑈1 × · · · ×𝑈𝑘 such that 𝑣 = 𝑢1 + · · · + 𝑢𝑘 . If
so, we represent the sum with the notation𝑈1 ⊕ · · · ⊕ 𝑈𝑘 , which equals𝑈1 + · · · +𝑈𝑘 .

The linearity means we can “shift” vectors and their linear combinations simultaneously, so focusing on all vectors can be
reduced to focusing on 0, in terms of whether they/it can be represented uniquely. By the way, to make the word “unique”
clearer, we mean the unique existence of a tuple in𝑈1 × · · · ×𝑈𝑘 in the following definition.

Proposition 2.11. Suppose 𝑉 is a vector space over F and𝑈1, · · · ,𝑈𝑘 ⊆ 𝑉 are subspaces of 𝑉 . Then, the sum𝑈1 + · · · +𝑈𝑘

is direct if and only if there exists a unique (𝑢1, · · · , 𝑢𝑘 ) ∈ 𝑈1 × · · · ×𝑈𝑘 such that 𝑢1 + · · · + 𝑢𝑘 = 0.
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Proof. “If” direction. Suppose for the sake of the contrapositive that the sum 𝑈1 + · · · + 𝑈𝑘 is not direct, and thus fix a
vector 𝑣 ∈ 𝑉 with representations

𝑢1 + · · · + 𝑢𝑘 = 𝑢′1 + · · · + 𝑢′𝑘 = 𝑣

for 𝑢1, 𝑢′1 ∈ 𝑈1, · · · , 𝑢𝑘 , 𝑢′𝑘 ∈ 𝑈𝑘 , where 𝑢𝑖 ≠ 𝑢′𝑖 for some 𝑖 ∈ {1, · · · , 𝑘}. Thus,

(𝑢1 − 𝑢′1) + · · · + (𝑢𝑘 − 𝑢′𝑘 ) = 0,

where at least one parenthesized factor is nonzero from assumption, which means 0 is not uniquely represented as the sum
of vectors from𝑈1, · · · ,𝑈𝑘 respectively.

“Only if” direction. Suppose 𝑈1 + · · · +𝑈𝑘 is direct, but 𝑢1 + · · · + 𝑢𝑘 = 𝑢′1 + · · · + 𝑢′𝑘 = 0 for 𝑢1, 𝑢′1 ∈ 𝑈1, · · · , 𝑢𝑘 , 𝑢′𝑘 ∈ 𝑈𝑘 ,
where 𝑢𝑖 ≠ 𝑢′𝑖 for some 𝑖 ∈ {1, · · · , 𝑘}. We thus have

(𝑢1 − 𝑢′1) + · · · + (𝑢𝑘 − 𝑢′𝑘 ) = 0,

where at least one parenthesized factor is nonzero from assumption, which means 0 is not uniquely represented as the sum
of vectors from𝑈1, · · · ,𝑈𝑘 respectively. This contradiction completes the proof. □

This proof is a bit crazy since the “if” and the “only if” directions look almost identical. We used the contrapositive for the
“if” and proof by contradiction for the “only if.” Of course, another way to view this is we can take the negation of both
sides of the “if and only if” that we want to prove.

Now the following result again can be seen through the two-lines example: because they intersect only at the origin, there’s
no “redundancy.”

Proposition 2.12. Suppose 𝑉 is a vector space over F and 𝑈 ,𝑊 ⊆ 𝑉 are subspaces of 𝑉 . Then, the sum 𝑈 +𝑊 is direct if
and only if𝑈 ∩𝑊 = {0}.

Proof. “If” direction. Suppose𝑈 +𝑊 is not direct. Thus, by Proposition 2.11, fix representations

𝑢 +𝑤 = 𝑢′ +𝑤 ′ = 0

for 𝑢,𝑢′ ∈ 𝑈 and 𝑤,𝑤 ′ ∈ 𝑊 , where either 𝑢 ≠ 𝑢′ or 𝑤 ≠ 𝑤 ′. Thus, (𝑢 − 𝑢′) + (𝑤 − 𝑤 ′) = 0, and thus (𝑤 − 𝑤 ′) is the
additive inverse of (𝑢 − 𝑢′); i.e., (−1) (𝑢 − 𝑢′). Hence, (𝑤 − 𝑤 ′) ∈ 𝑈 as well, and thus (𝑤 − 𝑤 ′) ∈ 𝑈 ∩𝑊 . By symmetry,
(𝑢 − 𝑢′) ∈ 𝑈 ∩𝑊 as well; yet at least one of (𝑢 − 𝑢′) and (𝑤 −𝑤 ′) is non-zero.

“Only if” direction. Suppose𝑈 +𝑊 is direct but𝑈 +𝑊 ≠ {0}. Fix 𝑣 ∈ 𝑈 ∩𝑊 where 𝑣 ≠ 0, whose existence is guaranteed
as 0 is in all (sub)spaces and hence 0 ∈ 𝑈 ∩𝑊 necessarily. Then, −𝑣 = (−1) · 𝑣 ∈ 𝑈 ∩𝑊 as well. But 𝑣 + (−𝑣) = 0 where
𝑣 ≠ 0, which contradicts the unique 0 element by Proposition 2.11. The proof is now finished. □

3 Finite-Dimensional Vector Spaces

We now define the linear combination of vectors. The language below uses a list, i.e., a tuple, but sets work equally well
since the linear combination is only defined for finitely many vectors. And of course, we need to take care of the trivial case
too. The span comes right after.

Definition 3.1. Given a vector space 𝑉 over F and a non-empty list of vectors 𝑢, 𝑣1, · · · , 𝑣𝑘 in 𝑉 , 𝑢 is said to be a linear
combination of 𝑣1, · · · , 𝑣𝑘 if there exists 𝑎1, · · · , 𝑎𝑘 ∈ F such that

𝑢 = 𝑎1 · 𝑣1 + · · · + 𝑎𝑘 · 𝑣𝑘 .

We also extend the definition so that there is a unique linear combination of no vectors, i.e., 0.
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Definition 3.2. Given a vector space𝑉 over F and vectors 𝑣1, · · · , 𝑣𝑘 ∈ 𝑉 , the span of 𝑣1, · · · , 𝑣𝑘 , denoted as span(𝑣1, · · · , 𝑣𝑘 ),
is defined as the collection of all linear combinations of 𝑣1, · · · , 𝑣𝑘 ; that is,

span(𝑣1, · · · , 𝑣𝑘 ) B {𝑎1 · 𝑣1 + · · · + 𝑎𝑘 · 𝑣𝑘 | 𝑎1, · · · , 𝑎𝑘 ∈ F}.

If span(𝑣1, · · · , 𝑣𝑘 ) = 𝑉 , then the list 𝑣1, · · · , 𝑣𝑘 is said to span 𝑉 . We also say that 𝑣1, · · · , 𝑣𝑘 is a spanning list of 𝑉 .

This following proposition is just a really intuitive statement. The thing that gets spanned is always a subspace, and the
smallest one containing all of the vectors in the spanning list.

Proposition 3.3. Given a vector space 𝑉 over F and vectors 𝑣1, · · · , 𝑣𝑘 ∈ 𝑉 , span(𝑣1, · · · , 𝑣𝑘 ) is the smallest subspace that
contains {𝑣1, · · · , 𝑣𝑘 }.

Proof. We first show that the span is indeed a subspace. Let 𝑢, 𝑣 ∈ span(𝑣1, · · · , 𝑣𝑘 ) and 𝑐 ∈ F where

𝑢 = 𝑎1 · 𝑣1 + · · · + 𝑎𝑘 · 𝑣𝑘 ,
𝑣 = 𝑎′1 · 𝑣1 + · · · + 𝑎′𝑘 · 𝑣𝑘 .

Then,
𝑢 + 𝑣 = (𝑎1 + 𝑎′1)︸    ︷︷    ︸

∈F

· · · 𝑣1 + · · · + (𝑎𝑘 + 𝑎′𝑘 )︸    ︷︷    ︸
∈F

·𝑣𝑘 ∈ span(𝑣1, · · · , 𝑣𝑘 ),

and
𝑐 · 𝑢 = (𝑐 · 𝑎1)︸ ︷︷ ︸

∈F

· · · 𝑣1 + · · · + (𝑐 · 𝑎𝑘 )︸  ︷︷  ︸
∈F

·𝑣𝑘 ∈ span(𝑣1, · · · , 𝑣𝑘 ).

Now let𝑈 ⊆ 𝑉 be an arbitrary subspace that contains {𝑣1, · · · , 𝑣𝑘 }.

Step 1. Since 𝑣1 ∈ 𝑈 , we have𝑈 ⊇ {𝑎1 · 𝑣1 | 𝑎1 ∈ F}.

Step j ( 𝑗 = 2, · · · , 𝑘). Suppose steps 1 through ( 𝑗 − 1) have been completed, which imply 𝑈 ⊇ {𝑎1 · 𝑣1 + · · · + 𝑎 𝑗−1 · 𝑣 𝑗−1 |
𝑎1, · · · , 𝑎 𝑗−1 ∈ F}. Since 𝑣 𝑗 ∈ 𝑈 , we have 𝑎 𝑗 · 𝑣 𝑗 ∈ 𝑈 for any 𝑎 𝑗 ∈ F. Hence,𝑈 ⊇ {𝑎1 · 𝑣1 + · · · + 𝑎 𝑗 · 𝑣 𝑗 | 𝑎1, · · · , 𝑎 𝑗 ∈ F}.

After completing steps 1 through 𝑘 , we have shown that𝑈 necessarily contains span(𝑣1, · · · , 𝑣𝑘 ). Hence span(𝑣1, · · · , 𝑣𝑘 ) is
the smallest such subspace. □

When we deal with finitely many vectors and their linear combinations, things get really easy. Recall that the concept
of dimension in matrices is defined by the number of vectors that span the space (if it exists). So, we have the following
definition:

Definition 3.4. A vector space𝑉 over F is said to be finite dimensional if there exists a finite subset {𝑣1, · · · , 𝑣𝑘 } of𝑉 such
that span(𝑣1, · · · , 𝑣𝑘 ) = 𝑉 .

Fact 3.5. Given a field F, P (F) is not finite dimensional, but for any 𝑛 ∈ Z≥0, P𝑛 (F) is finite dimensional.

Proof. Suppose for the sake of contradiction that 𝑓1, · · · , 𝑓𝑘 ∈ P (F) span 𝑉 .

If 𝑓1 = · · · = 𝑓𝑘 = 0, then 𝑉 = span(0, · · · , 0) = {0}. But observe that 𝜆𝑥.𝑥 ∈ P (F), which is not equal to 0 as verifiable by
evaluating at 𝑥 = 1. The premise that 𝑓1, · · · , 𝑓𝑘 are all 0 is therefore impossible

Then, let 𝑁 B max{deg 𝑓1, · · · , deg 𝑓𝑘 }, which is now necessarily an integer. Observe that 𝜆𝑥 .𝑥𝑁+1 ∈ P (F), but it is not in
the span of 𝑓1, · · · , 𝑓𝑘 , a contradiction.

Observe also that for any 𝑛 ∈ Z≥0, span(𝜆𝑥.1, · · · , 𝜆𝑥 .𝑥𝑛) = P𝑛 (F). □

Now let’s tackle linear dependence and independence.
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Definition 3.6. Given a vector space 𝑉 over F, a list of vectors 𝑣1, · · · , 𝑣𝑘 in 𝑉 is said to be linearly independent if for any
𝑎1, · · · , 𝑎𝑘 ∈ F such that

𝑎1 · 𝑣1 + · · · + 𝑎𝑘 · 𝑣𝑘 = 0,

we have 𝑎1 = · · · , 𝑎𝑘 = 0. We define the empty list of vectors to be linearly independent trivially.

If a list of vectors is not linearly independent, it is said to be linearly dependent.

A list of two vectors is linearly dependent if and only if one vector is a scalar multiple of the other. In general, a list of vectors
is linearly dependent if and only if one of the vectors is a linear combination of the rest (including the empty list).

Lemma 3.7 (Linear Dependence). Suppose 𝑉 is a vector space over F and let 𝑣1, · · · , 𝑣𝑘 be a linearly dependent list of
vectors in 𝑉 . Then, there exists 𝑗 ∈ {1, · · · , 𝑘} such that

• 𝑣 𝑗 ∈ span(𝑣1, · · · , 𝑣 𝑗−1) and

• span(𝑣1, · · · , 𝑣𝑘 ) = span(𝑣1, · · · , 𝑣 𝑗−1, 𝑣 𝑗+1, · · · , 𝑣𝑘 ).

Proof. Fix constants 𝑎1, · · · , 𝑎𝑘 ∈ F, not all zero, such that

𝑎1 · 𝑣1 + · · · + 𝑎𝑘 · 𝑣𝑘 = 0.

Let 𝑗 B max{ 𝑗 ∈ {1, · · · , 𝑘} | 𝑎 𝑗 ≠ 0}. Then, 𝑎 𝑗+1 = · · · = 𝑎𝑘 = 0. We therefore have

𝑣 𝑗 =

(
−𝑎1
𝑎 𝑗

)
· 𝑣1 + · · · +

(
−
𝑎 𝑗−1
𝑎 𝑗

)
· 𝑣 𝑗−1 ∈ span(𝑎1, · · · , 𝑎 𝑗−1). (1)

Observe that by definition, span(𝑣1, · · · , 𝑣𝑘 ) ⊇ span(𝑣1, · · · , 𝑣 𝑗−1, 𝑣 𝑗+1, · · · , 𝑣𝑘 ). Now suppose 𝑢 ∈ span(𝑣1, · · · , 𝑣𝑘 ). Fix
constants 𝑏1, · · · , 𝑏𝑘 such that

𝑢 = 𝑏1 · 𝑣1 + · · · + 𝑏𝑘 · 𝑣𝑘 .

Then, substituting with Equation 1, we have

𝑢 =

(
𝑏1 −

𝑎1
𝑎 𝑗

)
· 𝑣1 + · · · +

(
𝑏 𝑗−1 −

𝑎 𝑗−1
𝑎 𝑗

)
· 𝑣 𝑗−1 + 𝑏 𝑗+1 · 𝑣 𝑗+1 + · · · + 𝑏𝑘 · 𝑣𝑘 ∈ span(𝑣1, · · · , 𝑣 𝑗−1, 𝑣 𝑗+1, · · · , 𝑣𝑘 ).

Hence span(𝑣1, · · · , 𝑣𝑘 ) ⊆ span(𝑣1, · · · , 𝑣 𝑗−1, 𝑣 𝑗+1, · · · , 𝑣𝑘 ), and thus span(𝑣1, · · · , 𝑣𝑘 ) = span(𝑣1, · · · , 𝑣 𝑗−1, 𝑣 𝑗+1, · · · , 𝑣𝑘 ) □

The following result is crucial to building towards the concept of “dimension”: the length of a linearly independent list is at
most the length of a spanning list of a vector space.

Proposition 3.8. Suppose 𝑉 is a vector space over F. Let 𝑢1, · · · , 𝑢𝑚 be a linearly independent list of vectors in 𝑉 and
𝑣1, · · · , 𝑣𝑛 a spanning list of 𝑉 . Then,𝑚 ≤ 𝑛.

Proof. Consider the following process, repeating step 𝑖 for 𝑖 = 1, · · · ,𝑚. Let 𝑘1𝑠 = 𝑠 for 𝑠 = 1, · · · , 𝑛. Let ℓ be the list
𝑣𝑘1

1
, · · · , 𝑣𝑘1

𝑛
.

Step i. Note that ℓ is a length-𝑛 spanning list of𝑉 of the form𝑢1, · · · , 𝑢𝑖−1, 𝑣𝑘𝑖1 , · · · , 𝑣𝑘𝑖𝑛−𝑖+1 . Let ℓ
′ be the list𝑢1, · · · , 𝑢𝑖 , 𝑣𝑘𝑖1 , · · · ,

𝑣𝑘𝑖
𝑛−𝑖+1

(i.e., inserting 𝑢𝑖 to the 𝑖-th place in ℓ), which must be linearly dependent as 𝑢𝑖 is a linear combination of ℓ . By
Lemma 3.7, fix constants 𝑎1, · · · , 𝑎𝑛+1, not all zero, such that

𝑎1 · 𝑢1 + · · · + 𝑎𝑖 · 𝑢𝑖 + 𝑎𝑖+1 · 𝑣𝑘𝑖1 + · · · + 𝑎𝑛+1 · 𝑣𝑘𝑖𝑛−𝑖+1 = 0. (2)

Let 𝑗 B max{ 𝑗 ∈ {1, · · · , 𝑛 + 1} | 𝑎 𝑗 ≠ 0}.

Suppose for the sake of contradiction that 𝑗 ≤ 𝑖 . Then, 𝑎 𝑗+1 = · · · = 𝑎𝑖 = · · · = 𝑎𝑛+1 = 0. Hence, with 𝑎1, · · · , 𝑎 𝑗 not all zero
(in particular 𝑎 𝑗 ≠ 0),

𝑎1 · 𝑢1 + · · · + 𝑎 𝑗 · 𝑢 𝑗 = 0,
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which is impossible since 𝑢1, · · · , 𝑢 𝑗 , as a sub-list of 𝑢1, · · · , 𝑢𝑚 , must be linearly independent.

Thus 𝑗 > 𝑖 , and thus 𝑖 + 1 ≤ 𝑗 ≤ 𝑛 + 1⇒ 𝑖 ≤ 𝑛 due to the existence of such a 𝑗 . Note that 𝑎 𝑗 is multiplied with 𝑣𝑘𝑖
𝑗−𝑖
. Then by

the second conclusion in Lemma 3.7, span(𝑢1, · · · , 𝑢𝑖 , 𝑣𝑘𝑖1 , · · · , 𝑣𝑘𝑖𝑛−𝑖+1 ) = span(𝑢1, · · · , 𝑢𝑖 , 𝑣𝑘𝑖1 , · · · , 𝑣𝑘𝑖𝑗−𝑖−1 , 𝑣𝑘𝑖𝑗−𝑖+1 , · · · , 𝑣𝑘𝑖𝑛−𝑖+1 ) =
𝑉 . Let ℓ now be the length-𝑛 spanning list 𝑢1, · · · , 𝑢𝑖 , 𝑣𝑘𝑖1 , · · · , 𝑣𝑘𝑖𝑗−𝑖−1 , 𝑣𝑘𝑖𝑗−𝑖+1 , · · · , 𝑣𝑘𝑖𝑛−𝑖+1 , and let 𝑘𝑖+1𝑠 (where 𝑠 = 1, · · · , 𝑛 − 𝑖)
be the corresponding constants for vectors in ℓ from the list 𝑣1, · · · , 𝑣𝑛 by setting

𝑘𝑖+11 = 𝑘𝑖1, · · · , 𝑘𝑖+1𝑗−𝑖−1 = 𝑘𝑖𝑗−𝑖−1, 𝑘
𝑖+1
𝑗 = 𝑘𝑖𝑗−𝑖+1, · · · , 𝑘𝑖+1𝑛−𝑖 = 𝑘𝑖𝑛−𝑖+1 .

Clearly, step 1 is feasible from the setup of ℓ and 𝑘1𝑠 for 𝑠 = 1, · · · , 𝑛. It has now been shown that each step 𝑖 can be performed
for 𝑖 = 1, · · · ,𝑚. Hence, the underlined predicate in 𝑖 holds true in particular for 𝑖 =𝑚. Therefore,𝑚 ≤ 𝑛. □

This proof is pretty crazy and I still feel a bit icky… But we can always prove this by supposing the contrary and setting up
a linear system:

Proof. Suppose for the sake of contradiction that 𝑚 > 𝑛. Define a “tall” matrix 𝐴 ∈ R𝑚×𝑛 of coefficients, each of whose
rows contains at least one non-zero entry, such that

𝑢1 = 𝐴11 · 𝑣1 + · · · + 𝐴1𝑛 · 𝑣𝑛,
...

𝑢𝑚 = 𝐴𝑚1 · 𝑣1 + · · · + 𝐴𝑚𝑛 · 𝑣𝑛 .

Let �̃� ∈ R𝑚×𝑛 be a row echelon form of𝐴. Then, (because �̃� is strictly “tall,”) the (𝑛 + 1)-th to the𝑚-th rows of �̃� are all zero
rows. In particular, because the𝑚-th row of �̃� is the zero row, 𝑢𝑚 + 𝑣 = 0 for some 𝑣 ∈ span(𝑢1, · · · , 𝑢𝑚−1), which would
violate the given condition that 𝑢1, · · · , 𝑢𝑚 is an independent list. □

Another useful result: a subspace of a finite dimensional vector space is also finite dimensional.

Proposition 3.9. Let 𝑉 be a finite dimensional vector space and𝑈 ⊆ 𝑉 a subspace. Then,𝑈 is finite dimensional.

Proof. Let 𝑣1, · · · , 𝑣𝑛 be a spanning list of𝑉 . Consider the following process for 𝑖 = 1, 2, · · · , setting ℓ to be the empty list of
vectors in 𝑉 .

Step i. Note that ℓ is a length-(𝑖−1) independent list of vectors in𝑈 . If span ℓ = 𝑈 , then end the process. Otherwise, choose
an arbitrary 𝑢 ∈ 𝑈 \ span ℓ and append 𝑢 to the end of ℓ . By the contrapositive of Lemma 3.7, ℓ is now a length-𝑖 linearly
independent list of vectors in𝑈 .

It is obvious that the process will terminate after𝑚 steps where𝑚 ≤ 𝑛, for otherwise Proposition 3.8 would be violated.
Thus, the length-𝑚 list ℓ is independent and spans𝑈 . □

We now have the machinery to develop the concept of basis, and see how it gives rise to the notion of dimensionality.

Definition 3.10. Let 𝑉 be a vector space over F. A list of vectors in 𝑉 is said to be a basis of 𝑉 if the list is linearly
independent and spans 𝑉 .

The uniqueness of representation, a concept that we’ve already seen when dealing with direct sums of subspaces, also turns
out to work here.

Proposition 3.11. Let 𝑉 be a vector space over F. A list of vectors 𝑣1, · · · , 𝑣𝑘 in 𝑉 is a basis of 𝑉 if and only if every 𝑣 ∈ 𝑉
admits a unique choice of scalars (𝑎1, · · · , 𝑎𝑘 ) ∈ F𝑘 such that

𝑣 = 𝑎1 · 𝑣1 + · · · + 𝑎𝑘 · 𝑣𝑘 .
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Proof. “If” direction. Suppose any vector in𝑉 admits a unique linear combination of 𝑣1, · · · , 𝑣𝑘 . In particular, 0 is a unique
linear combination of 𝑣1, · · · , 𝑣𝑘 , which must be 𝑎1 = · · · = 𝑎𝑘 = 0, and hence the list is linearly independent. Thus, 𝑣1, · · · , 𝑣𝑘
is a basis of 𝑉 .

“Only if” direction. Suppose instead that 𝑣1, · · · , 𝑣𝑘 is a basis of𝑉 , and fix scalars (𝑎1, · · · , 𝑎𝑘 ), (𝑏1, · · · , 𝑏𝑘 ) ∈ F𝑘 such that

𝑎1 · 𝑣1 + · · · + 𝑎𝑘 · 𝑣𝑘 = 𝑏1 · 𝑣1 + · · · + 𝑏𝑘 · 𝑣𝑘 .

Rearranging the terms,
(𝑎1 − 𝑏1) · 𝑣1 + · · · + (𝑎𝑘 − 𝑏𝑘 ) · 𝑣𝑘 = 0.

Because 𝑣1, · · · , 𝑣𝑘 is linearly independent, 𝑎1 − 𝑏1 = · · · = 𝑎𝑘 − 𝑏𝑘 = 0. That is, 𝑎1 = 𝑏1, · · · , 𝑎𝑘 = 𝑏𝑘 . The proof is now
complete. □

The big idea behind the concept of a basis is that it’s the only intersection of independent lists and spanning list, and this
gives rise to the two following statements.

Proposition 3.12. Every spanning list of a vector space admits a sub-list that is a basis.

Proof. Suppose ℓ B 𝑣1, · · · , 𝑣𝑛 is a spanning list. Consider the following process for 𝑖 = 1, · · · , 𝑛.

Step i. Note that 𝑣𝑖 is an element of the spanning list ℓ . If it is a linear combination of all vectors in ℓ previous to 𝑣𝑖 , then
remove 𝑣𝑖 from the list. Note that 𝑣𝑖+1 remains an element of the list ℓ , and ℓ continues to span 𝑉 by Lemma 3.7.

After the process is finished, ℓ is a linearly independent and spanning list. □

Consequently, every finite dimensional vector space, which already has a spanning list, must have a basis.

Proposition 3.13. Let 𝑉 be a finite dimensional vector space. Then, 𝑉 has a basis.

Proof. Let 𝑣1, · · · , 𝑣𝑘 be a spanning list of 𝑉 . Then, by Proposition 3.12, it may be reduced to a sub-list that is a basis. □

The proof of the second statement directly uses the first.

Proposition 3.14. Every linearly independent list of a vector space admits a super-list that is a basis.

Proof. Let 𝑉 be a vector space over F. Suppose 𝑢1, · · · , 𝑢𝑚 is an independent list of vectors in 𝑉 and let 𝑣1, · · · , 𝑣𝑛 be a
spanning list of 𝑉 . Then the joined list 𝑢1, · · · , 𝑢𝑚, 𝑣1, · · · , 𝑣𝑛 is also a spanning list of 𝑉 . We now apply the process as
described in the proof of Proposition 3.12, which gives a basis of 𝑉 . Note that in the process, no 𝑢 𝑗 is ever removed for any
𝑗 ∈ {1, · · · ,𝑚}, for otherwise the list 𝑢1, · · · , 𝑢 𝑗−1 would be linearly dependent, which is impossible. Hence the resultant
list is a super-list of 𝑢1, · · · , 𝑢𝑚 . □

To tie into the previous concept of direct sums of subspaces, we have the following:

Proposition 3.15. Let 𝑉 be a finite dimensional vector space over F and suppose 𝑈 is a subspace of 𝑉 . Then, there exists
a subspace𝑊 of 𝑉 such that𝑈 ⊕𝑊 = 𝑉 .

Proof. Let 𝑢1, · · · , 𝑢𝑚 be a basis of𝑈 , which we extend by Proposition 3.14 to 𝑢1, · · · , 𝑢𝑚,𝑤1, · · · ,𝑤𝑛 , a basis of𝑊 . Note that
no𝑤𝑖 is a linear combination of 𝑢1, · · · , 𝑢𝑚,𝑤1, · · · ,𝑤𝑖−1, so in particular it is not in𝑈 , the span of 𝑢1, · · · , 𝑢𝑚 .

Let 𝑊 B span(𝑤1, · · · ,𝑤𝑛). Now suppose for the sake of contradiction that there exists (𝑎1, · · · , 𝑎𝑚) ∈ F𝑚\{0} and
(𝑏1, · · · , 𝑏𝑛) ∈ F𝑛\{0} such that

𝑎1 · 𝑢1 + · · · + 𝑎𝑚 · 𝑢𝑚 = 𝑏1 ·𝑤1 + · · · + 𝑏𝑛 ·𝑤𝑛 ∈ 𝑈 ∩𝑊 \{0} ⊆ 𝑉 .
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Then, this particular vector admits two representations as linear combinations of the basis 𝑢1, · · · , 𝑢𝑚,𝑤1, · · · ,𝑤𝑛 , a contra-
diction. Hence,𝑈 ∩𝑊 = {0}, and thus the sum𝑈 +𝑊 is direct.

Let 𝑣 ∈ 𝑉 be an arbitrary vector, which admits a representation 𝑣 = 𝑐1 · 𝑢1 + · · · + 𝑐𝑚 · 𝑢𝑚 + 𝑑1 · 𝑤1 + · · · + 𝑑𝑛 · 𝑤𝑛 =

(𝑐1 · 𝑢1 + · · · + 𝑐𝑚 · 𝑢𝑚) + (𝑑1 ·𝑤1 + · · · + 𝑑𝑛 ·𝑤𝑛) ∈ 𝑈 ⊕𝑊 . Therefore,𝑈 ⊕𝑊 = 𝑉 . □

Now, a clever use of Proposition 3.8 tell us that all bases of a vector space have the same length, which becomes the
foundation for the notion of dimensionality.

Proposition 3.16. Let 𝑉 be a finite dimensional vector space over F. Then, all bases of 𝑉 have the same length.

Proof. Let ℓ1, ℓ2 be two spanning lists of 𝑉 . Then, by Proposition 3.8, the length of ℓ1 is at most that of ℓ2. By symmetry, the
length of ℓ2 is at most that of ℓ1. Hence ℓ1 and ℓ2 have the same length. □

Now the definition:

Definition 3.17. For each vector space 𝑉 we associate a unique value, called the dimension of 𝑉 and denoted as dim𝑉 , in
Z≥0 ∪ {+∞}. If 𝑉 is finite dimensional, let dim𝑉 ∈ Z≥0 be the length of any basis of 𝑉 . Otherwise, let dim𝑉 B +∞.

Obviously, all subspaces are “smaller” than the space it is in, measured in terms of dimension. These super abstract state-
ments are actually not hard to prove—we’ve finished a lot of those with some of the statements above.

Proposition 3.18. Suppose 𝑉 is a finite-dimensional vector space and𝑈 ⊆ 𝑉 is a subspace. Then, dim𝑈 ≤ dim𝑉 .

Proof. Note that 𝑈 must be finite dimensional following Proposition 3.9. Now fix bases 𝑢1, · · · , 𝑢𝑚 of 𝑈 and 𝑣1, · · · , 𝑣𝑛 of
𝑉 . In particular 𝑢1, · · · , 𝑢𝑚 is linearly independent and 𝑣1, · · · , 𝑣𝑛 spans 𝑉 . Hence, by Proposition 3.8,𝑚 ≤ 𝑛. Therefore, by
Proposition 3.16, dim𝑈 ≤ dim𝑉 . □

The concept of dimension, which relies on Proposition 3.8, tells us this kind of “squeezing” happening: any independent list
is no longer than a basis, and any spanning list is no shorter than a basis. Then, it’s intuitive that an independent list long
enough is a basis, and that a spanning list short enough is also a basis. The proof follows cleveryly from Propositions 3.12
and 3.14.

Proposition 3.19. Suppose𝑉 is a finite dimensional vector space and let 𝑛 B dim𝑉 . Then, any independent list 𝑣1, · · · , 𝑣𝑛
is a basis of 𝑉 .

Proof. Note that the list 𝑣1, · · · , 𝑣𝑛 may be extended to a super-list by Proposition 3.14. Suppose𝑚 new vectors are appended.
Then, 𝑛 +𝑚 = dim𝑉 , so𝑚 = dim𝑉 − dim𝑉 = 0. Hence, the resultant list is 𝑣1, · · · , 𝑣𝑛 , which is a basis. □

Proposition 3.20. Suppose 𝑉 is a finite dimensional vector space and let 𝑛 B dim𝑉 . Then, any spanning list 𝑣1, · · · , 𝑣𝑛 is
a basis of 𝑉 .

Proof. Note that the list 𝑣1, · · · , 𝑣𝑛 may be reduced to a sub-list by Proposition 3.12. Suppose𝑚 vectors are removed. Then,
𝑛 −𝑚 = dim𝑉 , so𝑚 = dim𝑉 − dim𝑉 = 0. Hence, the resultant list is 𝑣1, · · · , 𝑣𝑛 , which is a basis. □

The concept of dimension is actually so well defined that it has an inclusion-exclusion property. We take for granted that
for any subspaces𝑈 ,𝑊 of a vector space𝑉 , the intersection𝑈 ∩𝑊 is also a subspace, which obviously satisfies the closure
properties.

Proposition 3.21. Suppose 𝑉 is a finite-dimensional vector space and 𝑈 ,𝑊 are subspaces of 𝑉 . Then, dim(𝑈 +𝑊 ) =
dim𝑈 + dim𝑊 − dim(𝑈 ∩𝑊 ).

9



Proof. Let𝑉 be an F-vector space. Let 𝑣1, · · · , 𝑣𝑘 be a basis of𝑈 ∩𝑊 , which may be extended to a basis 𝑣1, · · · , 𝑣𝑘 , 𝑢1, · · · , 𝑢𝑚
of𝑈 and a basis 𝑣1, · · · , 𝑣𝑘 ,𝑤1, · · · ,𝑤𝑛 of𝑊 . Then, dim(𝑈 ∩𝑊 ) = 𝑘 , dim𝑈 = 𝑘 +𝑚, and dim𝑊 = 𝑘 + 𝑛. It suffices to show
that 𝑣1, · · · , 𝑣𝑘 , 𝑢1, · · · , 𝑢𝑚,𝑤1, · · · ,𝑤𝑛 is a basis of𝑈 +𝑊 .

We first show linear independence. Consider constants 𝑎1, · · · , 𝑎𝑘 , 𝑏1, · · · , 𝑏𝑚, 𝑐1, · · · , 𝑐𝑛 ∈ F such that

𝑎1 · 𝑣1 + · · · + 𝑎𝑘 · 𝑣𝑘 + 𝑏1 · 𝑢1 + · · · + 𝑏𝑚 · 𝑢𝑚 + 𝑐1 ·𝑤1 + · · · + 𝑐𝑛 ·𝑤𝑛 = 0;

that is,
𝑊 ∋ 𝑐1 ·𝑤1 + · · · + 𝑐𝑛 ·𝑤𝑛 = (−𝑎1) · 𝑣1 + · · · + (−𝑎𝑘 ) · 𝑣𝑘 + (−𝑏1) · 𝑢1 + · · · + (−𝑏𝑚) · 𝑢𝑚 ∈ 𝑈 ,

so 𝑐1 ·𝑤1 + · · · + 𝑐𝑛 ·𝑤𝑛 ∈ 𝑈 ∩𝑊 , and thus admits a representation

𝑐1 ·𝑤1 + · · · + 𝑐𝑛 ·𝑤𝑛 = 𝑑1 · 𝑣1 + · · · + 𝑑𝑘 · 𝑣𝑘

for some constants 𝑑1, · · · , 𝑑𝑘 ∈ F; that is,

(−𝑑1) · 𝑣1 + · · · + (−𝑑𝑘 ) · 𝑣𝑘 + 𝑐1 ·𝑤1 + · · · + 𝑐𝑛 ·𝑤𝑛 = 0.

Because 𝑣1, · · · , 𝑣𝑘 ,𝑤1, · · · ,𝑤𝑛 is a basis and hence independent, we have 𝑑1 = · · · = 𝑑𝑘 = 𝑐1 = · · · = 𝑐𝑛 = 0.

Therefore,
(−𝑎1) · 𝑣1 + · · · + (−𝑎𝑘 ) · 𝑣𝑘 + (−𝑏1) · 𝑢1 + · · · + (−𝑏𝑚) · 𝑢𝑚 = 0,

and thus 𝑎1 = · · · = 𝑎𝑘 = 𝑏1 = · · · = 𝑏𝑚 = 0 since 𝑣1, · · · , 𝑣𝑘 , 𝑢1, · · · , 𝑢𝑚 is a basis and hence independent.

Lastly, for any 𝑣 ∈ 𝑈 +𝑊 , there exists 𝑢 ∈ 𝑈 and𝑤 ∈𝑊 such that 𝑣 = 𝑢 +𝑤 , where 𝑢 and𝑤 each is a linear combination of
the corresponding bases, whose sum is also representable as a linear combination of 𝑣1, · · · , 𝑣𝑘 , 𝑢1, · · · , 𝑢𝑚,𝑤1, · · · ,𝑤𝑛 . The
proof is complete. □

This inclusion-exclusion doesn’t work for more than 2 subspaces! This counterexample reminds us of the statement that
the sum of three subspaces doesn’t need to be direct even if their intersection is {0}!

However, when the sum of subspaces is distinct, we can add the dimensions up:

Corollary 3.22. Let𝑉 be a vector space and suppose𝑈1, · · · ,𝑈𝑛 are finite-dimensional subspaces of𝑉 whose sum is direct.
Then,

dim(𝑈1 ⊕ · · · ⊕ 𝑈𝑛) = dim𝑈1 + · · · + dim𝑈𝑛 .

Proof. Note that

dim(𝑈1 ⊕ · · · ⊕ 𝑈𝑛) = dim(𝑈1 + (𝑈2 ⊕ · · · ⊕ 𝑈𝑛))
= dim𝑈1 + dim(𝑈2 ⊕ · · · ⊕ 𝑈𝑛)
= dim𝑈1 + dim𝑈2 + dim(𝑈3 ⊕ · · · ⊕ 𝑈𝑛)
...

= dim𝑈1 + · · · + dim𝑈𝑛 .

The proof is complete. □

4 Linear Maps

4.1 Vector Space of Linear Maps

A linear map is just, well, a map that’s linear.
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Definition 4.1. A linear map 𝑇 is a function from an F-vector space 𝑉 to an F-vector space𝑊 that respects:

• ∀𝑢, 𝑣 ∈ 𝑉 ,𝑇 (𝑢 + 𝑣) = 𝑇 (𝑢) +𝑇 (𝑣);

• ∀𝑐 ∈ F,∀𝑣 ∈ 𝑉 ,𝑇 (𝑐 · 𝑣) = 𝑐 ·𝑇 (𝑣).

We denote the collection of all linear maps from 𝑉 to𝑊 with L(𝑉 ,𝑊 ) = hom(𝑉 ,𝑊 ).

Just like matrices, all we need are each column vectors—if the vector space is finite dimensional.

Proposition 4.2. Suppose 𝑣1, · · · , 𝑣𝑛 is a basis of 𝑉 , and 𝑤1, · · · ,𝑤𝑛 ∈ 𝑊 . Then, there exists a unique 𝑇 ∈ L(𝑉 ,𝑊 ) such
that for any 𝑖 = 1, · · · , 𝑛, 𝑇 (𝑣𝑖 ) = 𝑤𝑖 .

Proof. Existence. Let
𝑇 (𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛) = 𝑐1 ·𝑤1 + · · · + 𝑐𝑛 ·𝑤𝑛,

which is a linear map and indeed satisfies ∀𝑖 ∈ {1, · · · , 𝑛},𝑇 (𝑣𝑖 ) = 𝑤𝑖 .

Uniqueness. Let 𝑇 (𝑣𝑖 ) = 𝑤𝑖 for 𝑖 = 1, · · · , 𝑛 for an arbitrary linear map 𝑇 ∈ L(𝑉 ,𝑊 ). Then,

𝑇 (𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛) = 𝑐1 ·𝑇 (𝑣1) + · · · + 𝑐𝑛 ·𝑇 (𝑣𝑛) = 𝑐1 ·𝑤1 + · · · + 𝑐𝑛 +𝑤𝑛,

hence 𝑇 is unique. □

To get to the results we have for matrices, we should definitely define addition, scalar multiplication. This makes L(𝑉 ,𝑊 )
a vector space too.

Definition 4.3. Suppose 𝑇,𝑇1,𝑇2 ∈ L(𝑉 ,𝑊 ) and 𝑐 ∈ F, where 𝑉 ,𝑊 are both F-vector spaces. Then, we define (𝑇1 +𝑇2) ∈
L(𝑉 ,𝑊 ) by setting

(𝑇1 +𝑇2) (𝑣) = 𝑇1 (𝑣) +𝑇2 (𝑣).

Similarly, we define (𝑐 ·𝑇 ) ∈ L(𝑉 ,𝑊 ) by setting

(𝑐 ·𝑇 ) (𝑣) = 𝑐 ·𝑇 (𝑣).

Whenever possible, we define the product of two linear maps as their composition, which is also a linear map.

Proposition 4.4. Let 𝑉 ,𝑊 be vector spaces over F. Then, L(𝑉 ,𝑊 ) is a vector space over F.

Proof. It is obvious that:

• The 0 map is the additive identity;

• Additive commutativity follows from the additive commutativity of vectors;

• Additive associativity follows from the additive associativity of vectors;

• (−1) ·𝑇 is the additive inverse of 𝑇 ;

• 1F ·𝑇 = 𝑇 indeed;

• ((𝑎 · 𝑏) ·𝑇 ) (𝑣) = (𝑎 · 𝑏) ·𝑇 (𝑣) = 𝑎𝑏𝑇 (𝑣) equals (𝑎 · (𝑏 ·𝑇 )) (𝑣) = 𝑎 · (𝑏 ·𝑇 ) (𝑣) = 𝑎𝑏𝑇 (𝑣);

• The two distributive properties follow from those of 𝑉 and𝑊 .

Thus, L(𝑉 ,𝑊 ) is an F-vector space. □

It wouldn’t be surprising that dimL(𝑉 ,𝑊 ) = (dim𝑉 ) · (dim𝑊 ): you need that many numbers to fill the matrix for that
map!
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Proposition 4.5. Let 𝑉 ,𝑊 be finite-dimensional vector spaces over F. Then, dimL(𝑉 ,𝑊 ) = (dim𝑉 ) · (dim𝑊 ).

The proof is essentially the same: fix a basis 𝑣1, · · · , 𝑣𝑛 of 𝑉 and a basis 𝑤1, · · · ,𝑤𝑚 of𝑊 . Create the set of matrices, each
of which has only one entry with 1: define {𝑇𝑖, 𝑗 } (𝑖, 𝑗 ) ∈{1,· · · ,𝑛}×{1,· · · ,𝑚} by 𝑇𝑖, 𝑗 (𝑣𝑘 ) B 𝛿𝑘,𝑖𝑤 𝑗 . It’s pretty boring here on out to
show linear independence and the spanning property.

4.2 The Null Space and the Range

Definition 4.6. Let 𝑇 ∈ L(𝑉 ,𝑊 ). The null space of 𝑇 is the subspace

null𝑇 = {𝑣 ∈ 𝑉 | 𝑇 (𝑣) = 0}.

Let’s check that it is a subspace: if𝑇 (𝑢) = 𝑇 (𝑣) = 0 for some𝑢, 𝑣 ∈ 𝑉 , then (−𝑣) ∈ 𝑉 as well. So,𝑇 (𝑢) −𝑇 (−𝑣) = 𝑇 (𝑢+𝑣) = 0.
If 𝑇 (𝑣) = 0 for some 𝑣 ∈ 𝑉 , then 𝑐 ·𝑇 (𝑣) = 𝑇 (𝑐 · 𝑣) = 0 as well.

If a linear map 𝑇 is injective, then in particular the pre-image of {0} is the singleton (i.e., a set with exactly one element) is
{0}. The null space gives this nice way of making this idea more general and precise:

Proposition 4.7. Suppose 𝑇 ∈ L(𝑉 ,𝑊 ). Then, 𝑇 is injective if and only if null𝑇 = {0}.

Proof. “If” direction. Suppose null𝑇 = {0} and let 𝑢, 𝑣 ∈ 𝑉 be such that 𝑇 (𝑢) = 𝑇 (𝑣). Then, 𝑇 (𝑢) −𝑇 (𝑣) = 𝑇 (𝑢 − 𝑣) = 0,
so 𝑢 − 𝑣 ∈ null𝑇 , and hence 𝑢 − 𝑣 = 0. Therefore, 𝑢 = 𝑣 , and hence 𝑇 is injective.

“Only if” direction. Suppose instead that null𝑇 ≠ {0}. Because null𝑇 is a subspace, it must contain a non-zero vector 𝑣 .
Then, 𝑇 (𝑣) = 𝑇 (0) = 0, sop 𝑇 is not injective. □

I think I didn’t have to resort to the contrapositive, but whatever works works.

To get to the fundamental theorem of linear maps, we need to establish that the range also has the structure of a vector
space.

Proposition 4.8. Let 𝑇 ∈ L(𝑉 ,𝑊 ). Then, range𝑇 is a subspace of𝑊 .

Proof. Let F be the field associated with𝑉 and𝑊 . Let𝑤1,𝑤2 ∈ range𝑇 and fix 𝑢, 𝑣 ∈ 𝑉 such that𝑇 (𝑢) = 𝑤1 and𝑇 (𝑣) = 𝑤2.
Then,𝑤1 +𝑤2 = 𝑇 (𝑢) +𝑇 (𝑣) = 𝑇 (𝑢 + 𝑣) ∈ range𝑇 .

Now let𝑤 ∈ range𝑇 and 𝑐 ∈ F. Fix some 𝑣 ∈ 𝑉 such that 𝑇 (𝑣) = 𝑤 . Then, 𝑐 ·𝑤 = 𝑐 ·𝑇 (𝑣) = 𝑇 (𝑐 · 𝑣) ∈ range𝑇 . □

And this is what all this machinery has been building up to:

Theorem 4.9 (FundamentalTheorem of Linear Maps). Suppose𝑇 ∈ L(𝑉 ,𝑊 ) where𝑉 is finite dimensional. Then, dimnull𝑇 +
dim range𝑇 = dim𝑉 .

Proof. Let F be the field associated with 𝑉 and𝑊 . Because 𝑉 is finite dimensional, so is its subspace null𝑇 . Fix a basis
𝑢1, · · · , 𝑢𝑚 of null𝑇 , so dimnull𝑇 =𝑚. Extend this list to a basis 𝑢1, · · · , 𝑢𝑚, 𝑣1, · · · , 𝑣𝑛 of𝑉 by Proposition 3.14, so dim𝑉 =

𝑚 + 𝑛.

It suffices now to show that 𝑇 (𝑣1), · · · ,𝑇 (𝑣𝑛) is a basis of range𝑇 . Let 𝑤 ∈ range𝑇 and fix 𝑣 ∈ 𝑉 such that 𝑇 (𝑣) = 𝑤 . Fix
constants 𝑐1, · · · , 𝑐𝑛 ∈ F such that 𝑣 = 𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛 . Then, 𝑇 (𝑣) = 𝑐1 · 𝑇 (𝑣1) + · · · + 𝑐𝑛 · 𝑇 (𝑣𝑛) ∈ span(𝑣1, · · · , 𝑣𝑛).
Now let constants 𝑐1, · · · , 𝑐𝑛 ∈ F instead be such that 𝑐1 ·𝑇 (𝑣1) + · · · + 𝑐𝑛 ·𝑇 (𝑣𝑛) = 0. Then, 𝑇 (𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛) = 0, so
(𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛) ∈ null𝑇 and thus may be expressed as

𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛 = 𝑑1 · 𝑢1 + · · · + 𝑑𝑚 · 𝑢𝑚
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for some constants 𝑑1, · · · , 𝑑𝑚 ∈ F. Therefore,

(−𝑑1) · 𝑢1 + · · · + (−𝑑𝑚) · 𝑢𝑚 + 𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛 = 0.

Because 𝑢1, · · · , 𝑢𝑚, 𝑣1, · · · , 𝑣𝑛 is a basis, it is linearly independent. Therefore, in particular, 𝑐1 = · · · = 𝑐𝑛 = 0. The proof is
now complete. □

Here are some relevant corollaries.

Corollary 4.10. Let 𝑇 ∈ L(𝑉 ,𝑊 ) where dim𝑉 < dim𝑊 < +∞. Then, 𝑇 cannot be surjective.

Proof. It follows from Theorem 4.9 that

dim range𝑇 = dim𝑉 − dimnull𝑇
< dim𝑊 − dimnull𝑇
≤ dim𝑊 .

The final inequality remains strict. Therefore, range𝑇 ≠𝑊 , and thus 𝑇 is not surjective. □

Corollary 4.11. Let 𝑇 ∈ L(𝑉 ,𝑊 ) where dim𝑊 < dim𝑉 < +∞. Then, 𝑇 cannot be injective.

Proof. It follows from Theorem 4.9 that

dimnull𝑇 = dim𝑉 − dim range𝑇
> dim𝑉 − dim𝑊

> 0 = dim{0},

so null𝑇 ≠ {0}. Therefore, by Proposition 4.7, 𝑇 is not injective. □

4.3 Matrices

Definition 4.12. Suppose F is a field and let 𝑚,𝑛 ∈ N+. An 𝑚-by-𝑛 F-matrix, denoted as 𝐴 ∈ F𝑚,𝑛 , is a function
𝐴 : {1, · · · ,𝑚} × {1, · · · , 𝑛} → F, where 𝐴𝑖, 𝑗 , called the (𝑖, 𝑗)-th entry of 𝐴, is defined as 𝐴(𝑖, 𝑗) for (𝑖, 𝑗) ∈ {1, · · · ,𝑚} ×
{1, · · · , 𝑛}.

Pointwise addition and scalar multiplication of matrices as functions then make F𝑚,𝑛 a vector space.

We can see that F𝑚,𝑛 can be flattened to F𝑚𝑛 , so their structures as vector spaces are identical. Indeed, they are isomor-
phic.

Definition 4.13. Let 𝑇 ∈ L(𝑉 ,𝑊 ), where 𝑉 and𝑊 are both finite dimensional F-vector spaces. Suppose 𝑣1, · · · , 𝑣𝑛 is a
basis of 𝑉 and𝑤1, · · · ,𝑤𝑚 a basis of𝑊 . Define the matrix of 𝑇 under 𝑣1, · · · , 𝑣𝑛 and𝑤1, · · · ,𝑤𝑚 , denoted asM(𝑇 ), by

∀𝑖 ∈ {1, · · · ,𝑚}, 𝑇 (𝑣𝑖 ) = M(𝑇 )1,𝑖 ·𝑤1 + · · · +M(𝑇 )𝑚,𝑖 ·𝑤𝑚 .

It’s not entirely trivial that the matrix of a sum is the sum of the respective matrices! And the same goes for the scalar
multiplications.

Proposition 4.14. Let 𝑆,𝑇 ∈ L(𝑉 ,𝑊 ) and 𝜆 ∈ F, where 𝑉 and𝑊 are both finite dimensional F-vector spaces. Suppose
𝑣1, · · · , 𝑣𝑛 is a basis of 𝑉 and𝑤1, · · · ,𝑤𝑚 a basis of𝑊 . Then,M(𝑆 +𝑇 ) = M(𝑆) +M(𝑇 ) andM(𝜆 ·𝑇 ) = 𝜆 ·M(𝑇 ).

Proof. Let 𝑖 ∈ {1, · · · , 𝑛} be arbitrary. By definition, we have{
𝑆 (𝑣𝑖 ) = M(𝑆)1,𝑖 ·𝑤1 + · · · +M(𝑆)𝑚,𝑖 ·𝑤𝑚,

𝑇 (𝑣𝑖 ) = M(𝑇 )1,𝑖 ·𝑤1 + · · · +M(𝑇 )𝑚,𝑖 ·𝑤𝑚 .
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Then, adding the two,

𝑆 (𝑣𝑖 ) +𝑇 (𝑣𝑖 ) = (𝑆 +𝑇 ) (𝑣𝑖 ) = (M(𝑆 +𝑇 )1,𝑖 ) ·𝑤1 + · · · + (M(𝑆 +𝑇 )𝑚,𝑖 ) ·𝑤𝑚

= (M(𝑆)1,𝑖 +M(𝑇 )1,𝑖 ) ·𝑤1 + · · · + (M(𝑆)𝑚,𝑖 +M(𝑇 )𝑚,𝑖 ) ·𝑤𝑚

hence M(𝑆 +𝑇 ) = M(𝑆) +M(𝑇 ).

Similarly,

𝜆 ·𝑇 (𝑣𝑖 ) = (𝜆 ·𝑇 ) (𝑣𝑖 ) = M(𝜆 ·𝑇 ) (𝑣𝑖 )1,𝑖 ·𝑤1 + · · · +M(𝜆 ·𝑇 ) (𝑣𝑖 )𝑚,𝑖 ·𝑤𝑚

= 𝜆 · (M(𝑇 )1,𝑖 ·𝑤1 + · · · +M(𝑇 )𝑚,𝑖 ·𝑤𝑚)
= (𝜆 ·M(𝑇 )1,𝑖 ) ·𝑤1 + · · · + (𝜆 ·M(𝑇 )𝑚,𝑖 ) ·𝑤𝑚,

hence M(𝜆 ·𝑇 ) = 𝜆 ·M(𝑇 ). □

The matrix multiplication, while complicated-looking, is defined in that way for a reason:

Proposition 4.15. There exists a unique operation · : F𝑝,𝑛×F𝑛,𝑚 → F𝑝,𝑚 such that for any F-vector spaces𝑈 ,𝑉 and𝑊 with
bases 𝑢1, · · · , 𝑢𝑚 , 𝑣1, · · · , 𝑣𝑛 , and𝑤1, · · · ,𝑤𝑝 respectively, if 𝑆 ∈ L(𝑈 ,𝑉 ) and 𝑇 ∈ L(𝑉 ,𝑊 ), thenM(𝑇𝑆) = M(𝑇 ) ·M(𝑆).

Proof. Let 𝑖 ∈ {1, · · · ,𝑚} be arbitrary. Then,

(𝑇𝑆) (𝑢𝑖 )
= 𝑇 (𝑆 (𝑢𝑖 ))
= 𝑇 (M(𝑆)1,𝑖 · 𝑣1 + · · · +M(𝑆)𝑛,𝑖 · 𝑣𝑛)
= M(𝑆)1,𝑖 ·𝑇 (𝑣1) + · · · +M(𝑆)𝑛,𝑖 ·𝑇 (𝑣𝑛)
= M(𝑆)1,𝑖 · (M(𝑇 )1,1 ·𝑤1 + · · · +M(𝑇 )𝑝,1 ·𝑤𝑝 ) + · · · +M(𝑆)𝑛,𝑖 · (M(𝑇 )1,𝑛 ·𝑤1 + · · · +M(𝑇 )𝑝,𝑛 ·𝑤𝑝 )
= (M(𝑇 )1,1 ·M(𝑆)1,𝑖 + · · · +M(𝑇 )1,𝑛 ·M(𝑆)𝑛,𝑖 ) ·𝑤1 + · · · + (M(𝑇 )𝑝,1 ·M(𝑆)1,𝑖 + · · · +M(𝑇 )𝑝,𝑛 ·M(𝑆)𝑛,𝑖 ) ·𝑤𝑝 .

Indeed, the definition M(𝑇𝑆)𝑖, 𝑗 = M(𝑇 )𝑖,1 ·M(𝑆)1, 𝑗 + · · · +M(𝑇 )𝑖,𝑛 ·M(𝑆)𝑛,𝑗 is valid in the sense that M(𝑇𝑆) ∈ F𝑝,𝑚 .
This is then the unique way to define matrix multiplication such that the given condition holds. □

4.4 Inverse Map

In general, a function 𝑓 : 𝑋 → 𝑌 has an inverse 𝑓 −1 : 𝑌 → 𝑋 iff 𝑓 is bijective. For a linear map, we see that the inverse
works out to be linear too!

Proposition 4.16. Let 𝑉 ,𝑊 be F-vector spaces. If a linear map 𝑇 ∈ L(𝑉 ,𝑊 ) is invertible, then the inverse 𝑇 −1 ∈ L(𝑊,𝑉 )
is also linear.

Proof. Let 𝐼 denote the identity map 𝜆𝑤. 𝑤 on𝑊 . Then, for any 𝑐 ∈ F and𝑤1,𝑤2 ∈𝑊 ,

𝑇 (𝑇 −1 (𝑐 ·𝑤1 +𝑤2)) = 𝐼 (𝑐 ·𝑤1 +𝑤2) = 𝑐 · 𝐼 (𝑤1) + 𝐼 (𝑤2) = 𝑐 ·𝑇 (𝑇 −1 (𝑤1)) +𝑇 (𝑇 −1 (𝑤2)) = 𝑇 (𝑐 ·𝑇 −1 (𝑤1) +𝑇 −1 (𝑤2)) .

Because 𝑇 is injective in particular, 𝑇 −1 (𝑐 ·𝑤1 +𝑤2) = 𝑐 ·𝑇 −1 (𝑤1) +𝑇 −1 (𝑤2). □

Definition 4.17. Two F-vector spaces 𝑉 and𝑊 are said to be isomorphic, denoted as 𝑉 �𝑊 , if there exists an invertible
linear map 𝑇 ∈ L(𝑉 ,𝑊 ). In this case, such a 𝑇 is said to be an isomorphism from 𝑉 to𝑊 .

Isomorphisms between vector spaces are really boring. In fact, it doesn’t tell us much else than the dimension. More
precisely:

Proposition 4.18. Suppose 𝑉 and𝑊 are finite-dimensional F-vector spaces. Then, 𝑉 �𝑊 if and only if dim𝑉 = dim𝑊 .
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Proof. “If” direction. Fix bases 𝑣1, · · · , 𝑣𝑛 and𝑤1, · · · ,𝑤𝑛 of 𝑉 and𝑊 . Define 𝑇 ∈ L(𝑉 ,𝑊 ) by

∀𝑖 ∈ {1, · · · , 𝑛}, 𝑇 (𝑣𝑖 ) = 𝑤𝑖

through linear extension (Proposition 4.2). Then, range𝑇 = span(𝑤1, · · · ,𝑤𝑛) = 𝑊 , so 𝑇 is surjective. Now suppose
constants 𝑐1, · · · , 𝑐𝑛 ∈ F are such that 𝑇 (𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛) = 𝑐1 ·𝑤1 + · · · + 𝑐𝑛 ·𝑤𝑛 = 0. Because 𝑤1, · · · ,𝑤𝑛 is a linearly
independent list, 𝑐1 = · · · = 𝑐𝑛 = 0. Hence, null𝑇 = {0}, and thus 𝑇 is injective by Proposition 4.7.

“Only if” direction. Now suppose instead that 𝑇 ∈ L(𝑉 ,𝑊 ) is invertible. Then, null𝑇 = {0} by Proposition 4.7. Because
𝑇 is surjective, dim𝑊 = dim range𝑇 = dim𝑉 − dimnull𝑇 = dim𝑉 . □

A perhaps useful fact is given as follows.

Proposition 4.19. Let𝑉 ,𝑊 be F-vector spaces that share a finite dimension. Then, for any𝑇 ∈ L(𝑉 ,𝑊 ), the following are
equivalent:

• 𝑇 is invertible;

• 𝑇 is injective;

• 𝑇 is surjective.

Proof. (1)⇒ (2). Suppose 𝑇 is invertible. Then, it is injective in particular.

(2) ⇒ (3). Now suppose 𝑇 is injective; that is, null𝑇 = {0} by Proposition 4.7. Then, dim range𝑇 = dim𝑉 − dimnull𝑇 =

dim𝑉 . Since range𝑇 ⊆𝑊 , it must be that range𝑇 =𝑊 , and hence 𝑇 is surjective.

(3)⇒ (1). Finally, let 𝑇 be surjective; that is, range𝑇 =𝑊 . Then, dimnull𝑇 = dim𝑉 − dim range𝑇 = dim𝑉 − dim𝑊 = 0,
so 𝑇 is injective. Hence, 𝑇 is bijective, and thus invertible. □

Corollary 4.20. Let 𝑉 be a finite-dimensional vector space. Then, for any 𝑇 ∈ L(𝑉 ), the following are equivalent:

• 𝑇 is invertible;

• 𝑇 is injective;

• 𝑇 is surjective.

4.5 The Product Space

Prototypical Example. R × 𝑥R × 𝑥2R = P2 [𝑥 ∈ R].

Given any two F-vector spaces, there is a natural way to define a new vector space on the Cartesian product with pointwise
operations. A not-so-interesting but useful example is the R2 = R × R. Of course, an 𝑛-fold Cartesian product is more
general.

Definition 4.21. Let 𝑉1, · · · ,𝑉𝑘 be vector spaces. The (direct) product of 𝑉1, · · · ,𝑉𝑘 , denoted with the regular Cartesian
product as𝑉1×· · ·×𝑉𝑘 , is the 𝑘-fold Cartesian product endowedwith pointwise addition and pointwise scalar multiplication.

What does this space look like? We can view this from the perspective of bases. We’ll restrict our discussions to the product
of two vector spaces, but they can be readily generalized to more spaces.

Proposition 4.22. Suppose 𝑉 ,𝑊 are F-vector spaces with bases 𝑣1, · · · , 𝑣𝑛 and 𝑤1, · · · ,𝑤𝑚 respectively. Then, (𝑣1, 0), · · · ,
(𝑣𝑛, 0), (0,𝑤1), · · · , (0,𝑤𝑚) is a basis of 𝑉 ×𝑊 .

Proof. We first show the spanning property. Let (𝑣,𝑤) ∈ 𝑉 ×𝑊 be arbitrary. Then, fix constants 𝑐1, · · · 𝑐𝑛 and 𝑑1, · · · , 𝑑𝑚 in
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F such that 𝑣 = 𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛 and𝑤 = 𝑑1 ·𝑤1 + · · · + 𝑑𝑚 ·𝑤𝑚 . Thus,

(𝑣,𝑤) = (𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛, 𝑑1 ·𝑤1 + · · · + 𝑑𝑚 ·𝑤𝑚)
= (𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛, 0) + (0, 𝑑1 ·𝑤1 + · · · + 𝑑𝑚 ·𝑤𝑚)
= 𝑐1 · (𝑣1, 0) + · · · + 𝑐𝑛 · (𝑣𝑛, 0) + 𝑑1 · (0,𝑤1) + · · · + 𝑑𝑚 · (0,𝑤𝑚).

We now show linear independence. Suppose now that for constants 𝑐1, · · · 𝑐𝑛 and 𝑑1, · · · , 𝑑𝑚 in F we have

𝑐1 · (𝑣1, 0) + · · · + 𝑐𝑛 · (𝑣𝑛, 0) + 𝑑1 · (0,𝑤1) + · · · + 𝑑𝑚 · (0,𝑤𝑚) = (𝑣,𝑤) = 0 = (0, 0),

where by the same logic we have defined 𝑣 B 𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛 and 𝑤 B 𝑑1 ·𝑤1 + · · · + 𝑑𝑚 ·𝑤𝑚 . Hence, 𝑣 = 𝑤 = 0, and
the linear independence of each basis guarantees 𝑐1 = · · · = 𝑐𝑛 = 𝑑1 = · · · = 𝑑𝑚 = 0. □

Corollary 4.23. Let 𝑉 ,𝑊 be finite-dimensional F-vector spaces. Then, dim𝑉 ×𝑊 = dim𝑉 + dim𝑊 .

Wait we add the dimensions? Isn’t this supposed to be a product? It turns out there is another sense in which the direct
product acts like a sum; namely:

Proposition 4.24. Let 𝑉 ,𝑊 be finite-dimensional F-vector spaces. Then, 𝑉 ×𝑊 = 𝑉 × {0} ⊕ {0} ×𝑊 .

The proof is omitted. These products are really boring and don’t give rise to new, interesting structures beside those of
F𝑛 .

4.6 TheQuotient Space

We don’t have any sort of division in a vector space, but it turns out there is a way to “quotient” an entire space, at least in
the sense of the dimensions working out to satisfy

dim𝑉 /𝑈 = dim𝑉 − dim𝑈 ,

which is kind of the reverse of dim𝑉 ×𝑊 = dim𝑉 + dim𝑊 .

We now make this idea more precise.

Definition 4.25. Let 𝑉 be a vector space and 𝑈 ⊆ 𝑉 a subspace. Define 𝑉 /𝑈 B {𝑣 +𝑈 | 𝑣 ∈ 𝑉 }, where for any 𝑣 ∈ 𝑉 we
define 𝑣 +𝑈 B {𝑣 + 𝑢 | 𝑢 ∈ 𝑈 }.

Intuitively, 𝑣 +𝑈 is just the resulting shape of moving the shape𝑈 by the vector 𝑣 .

We’ll put off the vector space business (i.e., defining + and · on 𝑉 /𝑈 ) because there’s actually a non-trivial issue that we
haven’t seen much of before: namely, one 𝑣 ∈ 𝑉 /𝑈 can have two distinct representations 𝑣1 +𝑈 = 𝑣2 +𝑈 (with 𝑣1 ≠ 𝑣2). In
fact, in many cases, each 𝑣 ∈ 𝑉 /𝑈 has infinitely many representations.

For example, take𝑉 as the 𝑥𝑦-plane R2 and𝑈 = {(𝑥,𝑦) | 𝑥 = 𝑦 ∈ R} the diagonal line. Then, (0, 1) +𝑈 is the line 𝑦 = 𝑥 + 1,
naturally. But (1, 2)+𝑈 = {(1, 2)+(𝑥, 𝑥) | 𝑥 ∈ R} = {(𝑥+1, 𝑥+2) | (𝑥+1) ∈ R} = {(𝑥 ′, 𝑦′) | 𝑦′ = 𝑥 ′+1 ∈ R} = (0, 1)+𝑈 .

Fortunately, we have a very potent piece of machinery that’ll help us through these weeds.

Lemma 4.26. Suppose 𝑉 is a vector space with𝑈 ⊆ 𝑉 a subspace. Then, for any 𝑣1, 𝑣2 ∈ 𝑉 , the following are equivalent.

• 𝑣1 +𝑈 = 𝑣2 +𝑈 ;

• (𝑣1 +𝑈 ) ∩ (𝑣2 +𝑈 ) ≠ ∅.

• 𝑣1 − 𝑣2 ∈ 𝑈 ;

Proof. (1⇒ 2) Because 𝑣1 + 0 ∈ 𝑣1 +𝑈 , we know 𝑣1 +𝑈 = 𝑣2 +𝑈 is non-empty. Thus, the intersection is non-empty.
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(2⇒ 3) Now fix a particular 𝑣1 + 𝑢1 = 𝑣2 + 𝑢2 ∈ (𝑣1 +𝑈 ) ∩ (𝑣2 +𝑈 ). Then, 𝑣1 − 𝑣2 = (−1) · 𝑢1 + 1 · 𝑢2 ∈ 𝑈 .

(3⇒ 1) Suppose 𝑣1 − 𝑣2 ∈ 𝑈 , so 𝑣2 − 𝑣1 ∈ 𝑈 as well. Then,

𝑣1 +𝑈 = {𝑣1 + 𝑢 | 𝑢 ∈ 𝑈 } = {𝑣1 + (𝑣2 − 𝑣1) + 𝑢′︸          ︷︷          ︸
=𝑢

| 𝑢′ ∈ 𝑈 } = {𝑣2 + 𝑢′ | 𝑢′ ∈ 𝑈 } = 𝑣2 +𝑈 .

The proof is finished. □

Now that we have the machinery, we’ll first spell out what we want before justifying it makes sense.

Proposition 4.27. Let𝑉 be a vector space and𝑈 ⊆ 𝑉 a subspace. Then,𝑉 /𝑈 is made into a vector space with the following
operations:

(𝑣1 +𝑈 ) + (𝑣2 +𝑈 ) B (𝑣1 + 𝑣2) +𝑈 ,

𝑐 · (𝑣 +𝑈 ) B (𝑐 · 𝑣) +𝑈 .

The reason I call this a Proposition is because there is a need to justify that the definitions are consistent; that is, different
representations 𝑣 + 𝑈 = 𝑣 ′ + 𝑈 of the same object gives the same answer/output. We use the prime here to keep track of
representations since we already used the symbols 𝑣1 and 𝑣2 for addition.

Proof. Suppose 𝑣1 +𝑈 = 𝑣 ′1 +𝑈 and 𝑣2 +𝑈 = 𝑣 ′2 +𝑈 , so 𝑣1 − 𝑣 ′1, 𝑣2 − 𝑣 ′2 ∈ 𝑈 . Then,

(𝑣1 +𝑈 ) + (𝑣2 +𝑈 ) = (𝑣1 + 𝑣2) +𝑈 = (𝑣1 + 𝑣2 + (𝑣 ′1 − 𝑣1) + (𝑣 ′2 − 𝑣2)) +𝑈 = (𝑣 ′1 + 𝑣 ′2) +𝑈 = (𝑣 ′1 +𝑈 ) + (𝑣 ′2 +𝑈 ).

Similarly, suppose 𝑣 +𝑈 = 𝑣 ′ +𝑈 , so 𝑐 · (𝑣 ′ − 𝑣) ∈ 𝑈 . By the same logic,

𝑐 · (𝑣 +𝑈 ) = (𝑐 · 𝑣) +𝑈 = (𝑐 · 𝑣 + 𝑐 · (𝑣 ′ − 𝑣)) +𝑈 = (𝑐 · 𝑣 ′) +𝑈 = 𝑐 · (𝑣 ′ +𝑈 ).

The proof is complete. □

To get to the desired equality about the dimensions, we’ll obviously use a map and apply the fundamental theorem of linear
maps. A natural choice is:

Definition 4.28. Suppose 𝑉 is a vector space. To each subspace 𝑈 ⊆ 𝑉 is associated a map 𝜋 : 𝑉 → 𝑉 /𝑈 , called the
quotient map, defined as

𝜋 (𝑣) B 𝑣 +𝑈 .

Proposition 4.29. Suppose 𝑉 is a finite-dimensional F-vector space and 𝑈 ⊆ 𝑉 is a subspace. Then, dim𝑉 /𝑈 = dim𝑉 −
dim𝑈 .

Well, we already have dim𝑉 and dim range𝜋 = dim𝑉 /𝑈 . All we need to show is dim𝑈 = dimnull𝜋 .

Proof. Fix a basis 𝑢1, · · · , 𝑢𝑚 of 𝑈 and extend by Proposition 3.14 to a basis 𝑢1, · · · , 𝑢𝑚, 𝑣1, · · · , 𝑣𝑛 of 𝑉 , so dim𝑈 = 𝑚 and
dim𝑉 =𝑚 + 𝑛. Now,

null𝜋 = {𝑣 ∈ 𝑉 | 𝑣 +𝑈 = 0𝑉 /𝑈 } = {𝑣 ∈ 𝑉 | 𝑣 ∈ 𝑈 } = 𝑈 .

Thus, by Theorem 4.9, dim𝑉 /𝑈 = dim range𝜋 = dim𝑉 − dimnull𝜋 = dim𝑉 − dim𝑈 . □

So far things are boring and static. To get more structure, we’ll look at linear maps from or on 𝑉 /𝑈 . In particular, we’ll see
how “quotient”-ing the null space gives rise to a very nice map.

Proposition 4.30. Suppose𝑉 ,𝑊 are vector spaces. To each𝑇 ∈ L(𝑉 ,𝑊 )wemay associate a linearmap𝑇 ∈ L(𝑉 /null𝑇,𝑊 )
by

𝑇 (𝑣 + null𝑇 ) B 𝑇 (𝑣).
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As before, we’ll need to show that this definition is consistent; that is, two representations of the same input give the same
output.

Proof. Suppose 𝑣 + null𝑇 = 𝑣 ′ + null𝑇 ; that is, 𝑣 − 𝑣 ′ ∈ null𝑇 (Lemma 4.26), so −𝑇 (𝑣 − 𝑣 ′) = 0. Then,𝑇 (𝑣 + null𝑇 ) = 𝑇 (𝑣) =
𝑇 (𝑣) −𝑇 (𝑣 − 𝑣 ′) = 𝑇 (𝑣 ′) = 𝑇 (𝑣 ′ + null𝑇 ). □

Like we’ve seen, it turns out the notation 𝑣 + 𝑈 for representing an element in 𝑉 /𝑈 , while not unique, plays nicely with
linear stuff. Now, null𝑇 is precisely where 𝑇 (𝑣) = 0; i.e., where 𝑇 fails to be injective. Now that we “quotient”-ed away the
null space, it is reasonable to expect the resultant 𝑇 is injective. In fact, we have an even stronger result.

Proposition 4.31. Suppose𝑉 ,𝑊 are F-vector space and𝑇 ∈ L(𝑉 ,𝑊 ). Then,𝑇 is a isomorphism from𝑉 /null𝑇 to range𝑇 .

Proof. Surjectivity is obvious by construction. We now show injectivity. Suppose 𝑇 (𝑣 + null𝑇 ) = 𝑇 (𝑣 ′ + null𝑇 ); that is,
𝑇 (𝑣) = 𝑇 (𝑣 ′). Thus, 𝑇 (𝑣 − 𝑣 ′) = 0, so 𝑣 − 𝑣 ′ ∈ null𝑇 . Thus, by Lemma 4.26, 𝑣 + null𝑇 = 𝑣 ′ + null𝑇 . □

4.7 The Dual Space

Prototypical Example. Row vectors.

We’ve seen R𝑛 , the set of 𝑛-tuples of real numbers. We can also think of them as column vectors, just a different way to
write 𝑛-tuples. So what about 1 × 𝑛 row vectors?

Thinking more generally as to what these row vectors do, I claim it’s more appropriate to think of them as functions.
Consider for example, the 2 × 1 row vector 𝑣 ′ B

(
1 2

)
. I’m saying that 𝑣 ′ is a function that takes column vectors to

numbers by:

𝑣 ′ :
(
𝑥1
𝑥2

)
↦→

(
1 2

)
·
(
𝑥1
𝑥2

)
= 𝑥1 + 2𝑥2.

That is, 𝑣 ′ (𝑣) is just the matrix multiplication 𝑣 ′ · 𝑣 . Indeed, 𝑣 ′ is a function that takes R2, the set of column vectors, to
R.

The reason we want to aim for this apparently weird and roundabout way of thinking about these row vectors is because
functions—linear maps, actually—are readily applicable to more general discussions of vector spaces.

Definition 4.32. To each vector space 𝑉 over F we associate its dual space 𝑉 ′ B L(𝑉 , F).

We know the set of linear maps is a vector space, so every dual space is a vector space. One thing we can immediately say,
then, is:

Proposition 4.33. Let 𝑉 be a finite-dimensional vector space. Then, dim𝑉 ′ = dim𝑉 .

Proof. By Proposition 4.5, dim𝑉 ′ = dimL(𝑉 , F) = (dim𝑉 ) · 1 = dim𝑉 . □

So now what? Because we defined the dual space in terms of functions, the abstract way to go, it gets harder to actually
do concrete stuff/calculations like the example above. But all we need is a basis: that’s where matrices/tables of numbers
come from. We always want to keep in mind the “row vector” intuition as we develop more abstract concepts around the
dual space. No one can just get this without a “picture.”

Definition 4.34. Let 𝑉 be a vector space. To each basis 𝑣1, · · · , 𝑣𝑛 of 𝑉 we associate a length-𝑛 list of vectors 𝜙1, · · · , 𝜙𝑛 in
𝑉 ′, called the dual basis of 𝑣1, · · · , 𝑣𝑛 , which is defined by

∀𝑖 ∈ {1, · · · , 𝑛} 𝜙𝑖 (𝑣 𝑗 ) B 𝛿𝑖, 𝑗 .

Here, 𝛿𝑖, 𝑗 , called the Kronecker delta, is 1 if 𝑖 = 𝑗 and 0 otherwise. This definition is valid because all we need to define a
linear map 𝜙𝑖 is to define what values it takes on the basis.
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By the way, just because we call this list the dual basis doesn’t mean it’s actually a basis. We need to show that’s true.

Proposition 4.35. Let 𝑉 be a vector space and 𝑣1, · · · , 𝑣𝑛 a basis of 𝑉 . Then, the dual basis 𝜙1, · · · , 𝜙𝑛 is a basis of 𝑉 ′.

Proof. We first show linear independence. Let F be the field associated with 𝑉 . Suppose constants 𝑐1, · · · , 𝑐𝑛 ∈ F are such
that

𝑐1 · 𝜙1 + · · · + 𝑐𝑛 · 𝜙𝑛 = 0.

Then, for any 𝑒𝑖 where 𝑖 = 1, · · · , 𝑛,

(𝑐1 · 𝜙1 + · · · + 𝑐𝑛 · 𝜙𝑛) (𝑒𝑖 ) = 𝑐1 · 𝜙1 (𝑒𝑖 ) + · · · + 𝑐𝑛 · 𝜙𝑛 (𝑒𝑖 ) = 𝑐1𝛿1,𝑖 + · · · + 𝑐𝑛𝛿𝑛,𝑖 = 𝑐𝑖 = 0.

Thus, 𝜙1, · · · , 𝜙𝑛 is a length-𝑛, linearly independent list of vector in𝑉 ′. Because dim𝑉 ′ = dim𝑉 = 𝑛, the dual basis is also a
spanning list by Proposition 3.14, and thus a basis. □

What about linear maps? How do the idea of linear maps and that of the dual space interact? More specifically, we want
some sort of a dual map.

Invoking the intuition of making a column vector a row vector by taking the transpose, we similarly want to define a dual
map that acts like the transpose of a matrix. Because we use the abstract language of functions, it becomes hard to track
things without making clear the domains and codomains. If 𝑇 ∈ L(𝑉 ,𝑊 ) with dim𝑉 = 𝑛 and dim𝑊 = 𝑚 (i.e., an𝑚 × 𝑛
matrix), we want a “transpose” 𝑇 ′ (i.e., an “𝑛 ×𝑚” matrix) that takes an𝑚-dimensional object to an 𝑛-dimensional object.
We will do this by taking 𝑇 ′ ∈ L(𝑊 ′,𝑉 ′), instead of the perhaps more intuitive choice of 𝑇 ′ ∈ L(𝑊,𝑉 ) as an actual 𝑛 ×𝑚
matrix, because the following definition is so much more natural:

Definition 4.36. Let 𝑉 ,𝑊 be vector spaces over the same field. To each linear map 𝑇 ∈ L(𝑉 ,𝑊 ) we associate a unique
dual map 𝑇 ′ :𝑊 ′ → 𝑉 ′, defined as

𝑇 ′ (𝜓 ) B 𝜓 ◦𝑇 .

That’s it, just the composition! This works because this 𝜓 ◦𝑇 , which is a linear function in 𝑉 ′, takes in a vector 𝑣 ∈ 𝑉 and
would output (𝜓 ◦ 𝑇 ) (𝑣) = 𝜓 (𝑇 (𝑣)). Now 𝑇 (𝑣) ∈ 𝑊 , so we can shove it inside 𝜓 just fine and get a number. As we will
show, this natural operation preserves linearity just fine.

Note that the composition of two functions 𝑓 ◦ 𝑔 is linear in 𝑓 when 𝑔 is fixed. This is because ((𝑐 𝑓1 + 𝑓2) ◦ 𝑔) (𝑥) =

(𝑐 𝑓1 + 𝑓2) (𝑔(𝑥)) = 𝑐 𝑓1 (𝑔(𝑥)) + 𝑓2 (𝑔(𝑥)) = (𝑐 · (𝑓1 ◦ 𝑔)) (𝑥) + (𝑓2 ◦ 𝑔) (𝑥) = (𝑐 · (𝑓1 ◦ 𝑔) + 𝑓2 ◦ 𝑔) (𝑥). In general, 𝑓 ◦ 𝑔 may not
be linear in 𝑔, but it does work out if 𝑓 is also linear.

Proposition 4.37. Let 𝑉 ,𝑊 be vector spaces over the same field. For every 𝑇 ∈ L(𝑉 ,𝑊 ), its dual map 𝑇 ′ : 𝑊 ′ → 𝑉 ′ is a
linear map.

Proof. It is obvious that

𝑇 ′ (𝑐 ·𝜓1 +𝜓2) = (𝑐 ·𝜓1 +𝜓2) ◦𝑇 = 𝑐 ·𝜓1 ◦𝑇 +𝜓2 ◦𝑇 = 𝑐 ·𝑇 ′ (𝜓1) +𝑇 ′ (𝜓2).

The proof is finished. □

The usual properties of the matrix transpose readily translates to the map duality, except the proofs… it gets hectic.

Proposition 4.38. Let 𝑆 ∈ L(𝑉 ,𝑊 ) and 𝑇,𝑇1,𝑇2 ∈ L(𝑈 ,𝑉 ). Let F denote the field associated with 𝑈 ,𝑉 ,𝑊 and suppose
𝑐 ∈ F. Then,

• (𝑐 ·𝑇1 +𝑇2)′ = 𝑐 ·𝑇 ′1 +𝑇 ′2 ;

• (𝑆𝑇 )′ = 𝑇 ′𝑆 ′.
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While these results seem obvious, the proofs are surprisingly slippery. Like I said, the linearity of 𝑓 ◦𝑔 in𝑔 is not immediately
obvious. For the following proof, always keep in mind what the object is: 𝜓 ∈ 𝑉 ′ is a function from 𝑉 to F; the output
𝑇 ′ (𝜓 ) ∈ 𝑈 ′ is a function from𝑈 to F. For proving the second point, we use the fact that ◦ is associative: (𝑓 ◦𝑔)◦ℎ = 𝑓 ◦(𝑔◦ℎ)
naturally.

Proof. Firstly, for any𝜓 ∈ 𝑉 ′ and 𝑢 ∈ 𝑈 ,

(𝑐 ·𝑇1 +𝑇2)′ (𝜓 ) (𝑢) = (𝜓 ◦ (𝑐 ·𝑇1 +𝑇2)) (𝑢) (Definition of ′)
= 𝜓 ((𝑐 ·𝑇1 +𝑇2) (𝑢)) (Definition of ◦)
= 𝜓 (𝑐 ·𝑇1 (𝑢) +𝑇2 (𝑢)) (Pointwise VS ops on L(𝑈 ,𝑉 ))
= 𝑐 ·𝜓 (𝑇1 (𝑢)) +𝜓 (𝑇2 (𝑢)) (𝜓 is linear)
= 𝑐 · (𝜓 ◦𝑇1) (𝑢) + (𝜓 ◦𝑇2) (𝑢) (Definition of ◦)
= (𝑐 · (𝜓 ◦𝑇1) +𝜓 ◦𝑇2) (𝑢) (Pointwise VS ops on𝑈 ′)
= (𝑐 ·𝑇 ′1 (𝜓 ) +𝑇 ′2 (𝜓 )) (𝑢) (Definition of ′)
= (𝑐 ·𝑇 ′1 +𝑇 ′2 ) (𝜓 ) (𝑢) (Pointwise VS ops on L(𝑉 ′,𝑈 ′))

so (𝑐 ·𝑇1 +𝑇2)′ = 𝑐 ·𝑇 ′1 +𝑇 ′2 .

To show the second item, let 𝜔 ∈𝑊 ′ be arbitrary. Then,

(𝑆𝑇 )′ (𝜔) = 𝜔 ◦ (𝑆 ◦𝑇 ) = (𝜔 ◦ 𝑆) ◦𝑇 = 𝑆 ′ (𝜔) ◦𝑇 = 𝑇 ′ (𝑆 ′ (𝜔)) = (𝑇 ′ ◦ 𝑆 ′) (𝜔),

so (𝑆𝑇 )′ = 𝑇 ′𝑆 ′. □

[TODO: Annihilators]

5 Some Results on Polynomials

To develop the next big topic—eigen-stuff, we need some more machinery on polynomials. As we recall, we frequently
used the (monic) “characteristic polynomial” 𝜒𝐴 (𝜆) = det(𝐴 − 𝜆 · 𝐼 ) for a square matrix 𝐴. When we need results related to
existence, these results will be greatly helpful.

Recall that for 𝑛 ∈ Z≥0, the polynomial vector spaces over a field F are defined as

P𝑛 (F) = {𝑥 ↦→ 𝑎0 + · · · + 𝑎𝑛𝑥𝑛 | 𝑎0, · · · , 𝑎𝑛 ∈ F},

P (F) =
∞⋃
𝑛=0

𝑃𝑛 (F).

For any 𝑛 ∈ Z≥0, the vectors 𝑒𝑖 B 𝑥 ↦→ 𝑥𝑖 for 𝑖 = 0, · · · , 𝑛 form a basis of P𝑛 (F), so dimP𝑛 (F) = 𝑛 + 1.

For a polynomial 𝑝 ∈ P(F) with 𝑝 (𝑥) = 𝑎0 + · · · + 𝑎𝑛 , we have deg𝑝 = max{ 𝑗 ∈ {0, · · · , 𝑛} | 𝑎 𝑗 ≠ 0} if 𝑝 ≠ 0. Otherwise,
deg 0 = −∞. This definition, while weird, allows us to have:

deg(𝑝 + 𝑞) = max{𝑝, 𝑞},
deg(𝑝𝑞) = deg𝑝 + deg𝑞,

where we have intuitively −∞+𝑥 = −∞ and −∞ < 𝑥 for any 𝑥 ∈ F. We omit the proof to stay focused on the linear algebra
aspect.

Here is a really neat application of linear algebra: the degree and the dimension of the polynomial subspace has a nice link
that allows us to prove existence and uniqueness with the bijectivity of a certain map.
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Proposition 5.1 (Polynomial Division). For any 𝑝, 𝑠 ∈ P (F) with 𝑠 ≠ 0, there exists unique 𝑞 ∈ P𝑛−𝑚 (F) and 𝑟 ∈ P𝑚−1 (F)
such that 𝑝 = 𝑠𝑞 + 𝑟 .

The proof below might look a bit messy, but draw the parallel to regular integer division. If 𝑛 < 𝑚, we have something
similar to 2÷5 = 0 with remainder 2, which is sort of trivial. Otherwise, we have a non-zero quotient, which is where linear
algebra comes in.

Proof. Let 𝑛 = deg𝑝 and𝑚 = deg 𝑠 and suppose 𝑞 ∈ P𝑛−𝑚 (F) and 𝑟 ∈ P𝑚−1 (F) are arbitrary.

Suppose 𝑛 < 𝑚. If 𝑞 ≠ 0, then

𝑝 = 𝑠𝑞 + 𝑟 ⇒ 𝑛 = deg(𝑠𝑞 + 𝑟 ) = max{𝑚 + deg𝑞︸︷︷︸
≥0

, deg 𝑟︸︷︷︸
≤𝑚−1

} =𝑚 + deg𝑞 ≥ 𝑚,

a contradiction. Thus, 𝑞 = 0, so 𝑝 = 𝑠𝑞+𝑟 = 0+𝑟 implies 𝑟 = 𝑝 necessarily. Indeed, (𝑞, 𝑟 ) = (0, 𝑝) uniquely satisfies 𝑝 = 𝑠𝑞+𝑟 .

Now suppose 𝑛 ≥ 𝑚. Similarly, 𝑝 = 𝑠𝑞 + 𝑟 ⇒ 𝑛 = 𝑚 + deg𝑞, so deg𝑞 = 𝑛 −𝑚 and thus 𝑞 ∈ P𝑛−𝑚 (F). Define a map
𝑇 : P𝑛−𝑚 (F) × P𝑚−1 (F) → P𝑛 (F) by 𝑇 (𝑞, 𝑟 ) B 𝑠𝑞 + 𝑟 . Note that 𝑇 is linear; i.e., 𝑇 ∈ (P𝑛−𝑚 (F) × P𝑚−1 (F),P𝑛 (F)): indeed,

(𝑠 · (𝑐𝑞) + (𝑐𝑟 )) + (𝑠 · 𝑞 + 𝑟 ) = 𝑠 · (𝑐𝑞 + 𝑞) + (𝑐𝑟 + 𝑟 ).

We claim that 𝑇 is invertible. Note that

dimP𝑛−𝑚 (F) × P𝑚−1 (F) = (𝑛 −𝑚 + 1) + (𝑚 − 1 + 1) = 𝑛 + 1 = dimP𝑛 (F),

so it suffices to show that 𝑇 is injective by Proposition 4.19. Suppose 𝑇 (𝑞, 𝑟 ) = 𝑠𝑞 + 𝑟 = 0. Then, 𝑞 = 0, for otherwise

deg(𝑠𝑞 + 𝑟 ) = max{𝑚 + deg𝑞︸︷︷︸
≥0

, deg 𝑟︸︷︷︸
≤𝑚−1

} ≥ 𝑚 ≠ −∞.

Further, 𝑠𝑞 + 𝑟 = 𝑠 · 0 + 𝑟 = 0, so 𝑟 = 0 also. Then, null𝑇 = {(0, 0)} = {0}, so 𝑇 is injective and hence bijective as claimed.
Thus, for every 𝑝 ∈ P𝑛 (F), there exists unique 𝑞 ∈ P𝑛−𝑚 (F) and 𝑟 ∈ P𝑚−1 (F) as claimed. □

The most important result related to our discussions is the fundamental theorem of algebra, which we state below. We also
omit the proof because it must rely on some sort of algebra-related results.

Theorem 5.2 (Fundamental Theorem of Algebra). Any non-constant complex polynomial 𝑝 ∈ P (C) has at least one zero.

Corollary 5.3 (Polynomial Decomposition). For any non-constant complex polynomial 𝑝 ∈ P (C) (that is, deg𝑝 ≥ 1), there
are unique 𝑐 ∈ C and {𝜆1, · · · , 𝜆𝑛} ⊂ C such that 𝑝 (𝑧) = 𝑐 · (𝑧 − 𝜆1) · · · (𝑧 − 𝜆𝑛), where 𝑛 = deg𝑝 .

Proof. Let 𝑛 B deg𝑝 ≥ 1 and fix constants 𝑎0, · · · , 𝑎𝑛 ∈ F such that 𝑝 (𝑧) = 𝑎0 + · · · + 𝑎𝑛𝑥𝑛 . Then by Theorem 5.2, 𝑝 has a
root 𝜆1. Let 𝑠 (𝑧) B 𝑧 − 𝜆1, so deg 𝑠 = 1. By Proposition 5.1, fix 𝑞 ∈ P𝑛−1 (C) and 𝑟 ∈ P0 (C) such that 𝑝 = 𝑠𝑞 + 𝑟 .

Suppose for the sake of contradiction that 𝑟 ≠ 0. Then, 𝑝 (𝜆1) = 0 + 𝑟 (𝜆1) = 0. But 𝑟 ∈ P0 (C) is a constant polynomial,
so 𝑟 = 0, a contradiction. Therefore, 𝑟 = 0, so 𝑝 (𝑧) = (𝑧 − 𝜆1) · 𝑞(𝑧), where deg𝑞 = 𝑛 − 1. Now, set 𝑝 ← 𝑞 and repeat
the procedure 𝑛 times, for all of which we have deg𝑛 ≥ 1, to obtain zeroes 𝜆1, · · · , 𝜆𝑛 . Now deg𝑝 ≤ 0, so 𝑝 is a constant
𝑐 = 𝑝 (0). Thus,

𝑝 (𝑧) = 𝑐 · (𝑧 − 𝜆1) · · · (𝑧 − 𝜆𝑛).
The proof is complete. □

Note that the 𝜆𝑖 ’s can repeat; that is, |{𝜆1, · · · , 𝜆𝑛}| ≤ 𝑛 in general. For this reason, we might prefer the following form
which has unique 𝑐 ∈ C and unique 𝜆′1, · · · , 𝜆′𝑚 ∈ C with 𝜆′1 < · · · < 𝜆′𝑚 :

𝑝 (𝑧) = 𝑐 · (𝑧 − 𝜆′1)𝑑1 · · · (𝑧 − 𝜆′𝑚)𝑑𝑚 ,

where𝑑1, · · · , 𝑑𝑚 ∈ N+ and𝑑1+· · ·+𝑑𝑚 = 𝑛—we obtain the𝑚 distinct roots with their algebraic multiplicity being𝑑1, · · · , 𝑑𝑚
respectively.
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6 Eigen-Stuff

6.1 Basic Definitions and Facts

When we studied the equation 𝑇𝑣 = 𝜆𝑣 for matrices, we had an abundance of results related to eigenvalues and such. The
equation, though, work also in general for any operators, which allows us to extend this discussion far beyond just matrices.
The applications are everywhere: from solving differential equations to recurrences, they show up in all practical areas of
science and engineering.

Before we go right in to eigenvalues, let’s first look at what abstract properties a map should have to have an eigenvalue.
We use the language of invariance:

Definition 6.1. Suppose 𝑉 is a finite-dimensional vector space and 𝑈 ⊆ 𝑉 is a subspace. Let 𝑇 ∈ L(𝑉 ). Then, 𝑈 is said to
be invariant under 𝑇 if 𝑇 (𝑈 ) ⊆ 𝑈 .

Because 𝑇 is an operator from 𝑉 to 𝑉 , some structures get nicely preserved naturally. It’s not hard to see that if 𝑇𝑣 = 𝜆𝑣

for some 𝑣 ≠ 0, then span(𝑣) is invariant under 𝑇 . Conversely, if a 1-d subspace 𝑈 = span(𝑣) is invariant under 𝑇 for some
𝑣 ≠ 0, then 𝑇 |𝑈 ∈ L(𝑈 ) must be a scalar multiple, and thus correspond to an eigenvalue.

For some examples, {0}, 𝑉 , null𝑇 , and range𝑇 are all invariant under 𝑇 always.

But for defining the eigenvalue, we will content ourselves with the usual formulation.

Definition 6.2. Suppose𝑉 is an F-vector space and𝑇 ∈ L(𝑉 ). A number 𝜆 ∈ F is said to be an eigenvalue of𝑇 if𝑇 (𝑣) = 𝜆𝑣

for some 𝑣 ∈ 𝑉 \{0}. Let 𝐸 (𝑇 ) B {𝜆 ∈ F : ∃𝑣 ∈ 𝑉 \{0},𝑇 (𝑣) = 𝜆 · 𝑣} be the set of all 𝑇 ’s eigenvalues. If 𝜆 ∈ 𝐸 (𝑇 ), then we
define the associated eigenspace 𝐸 (𝑇, 𝜆) B {𝑣 ∈ 𝑉 | 𝑇 (𝑣) = 𝜆 · 𝑣}, which is a subspace of 𝑉 .

Now that we’ve defined eigenvalues, how do we find one? We might recall solving det(𝑇 − 𝜆 · 𝐼 ) = 0 for 𝜆. While we
do not have the determinant yet, we know that det𝐴 = 0 iff 𝐴 is not-invertible. In the language we are familiar with, it
turns out injectivity suffices to capture this property. Note that invertibility and injectivity of operators are not, in general,
equivalent in (possibly infinite-dimensional) vector spaces. While the determinant no longer exists for infinite operators
(specifically, infinite matrices), the definitions of eigen-stuff for those operators remain valid, and are in fact really useful
in a wide variety of settings like physics, differential equations, etc.

Proposition 6.3. Suppose 𝑉 is an F-vector space, 𝑇 ∈ L(𝑉 ), and 𝜆 ∈ F. Then, 𝜆 ∈ 𝐸 (𝑇 ) if and only if 𝑇 − 𝜆 · 𝐼 is not
injective.

Proof. “If” direction. Suppose 𝑇 − 𝜆 · 𝐼 is not injective. Then, fix 𝑣 ∈ 𝑉 \{0} such that (𝑇 − 𝜆 · 𝐼 ) (𝑣) = 𝑇𝑣 − 𝜆 · 𝐼𝑣 = 0, so
𝑇𝑣 = 𝜆𝑣 for some 𝑣 ≠ 0 and hence 𝜆 ∈ 𝐸 (𝑇 ).

“Only if” direction. Now suppose 𝜆 ∈ 𝐸 (𝑇 ). By definition, fix 𝑣 ∈ 𝑉 \{0} such that 𝑇𝑣 = 𝜆𝑣 . Then, (𝑇 − 𝜆 · 𝐼 ) (𝑣) = 0 but
𝑣 ≠ 0, so 𝑇 − 𝜆 · 𝐼 has a non-trivial null space and thus is not injective. □

Logically, we introduce eigenvectors after eigenvalues, because an eigenvalue usually corresponds to many eigenvec-
tors.

Definition 6.4. Suppose 𝑇 ∈ L(𝑉 ) and 𝜆 ∈ 𝐸 (𝑇 ). A vector 𝑣 ∈ 𝑉 \{0} is said to be an eigenvector of 𝑇 associated with 𝜆,
or a 𝜆-eigenvector of 𝑇 , if 𝑇𝑣 = 𝜆𝑣 .

For some examples:

• For the identity operator 𝐼 ∈ L(𝑉 ), we have 𝐸 (𝐼 ) = {1} and any non-zero vector is an eigenvector;

• For the derivative operator 𝑇 ∈ L(P (F)) with 𝑇 (𝑝) = 𝑝′, we have 𝐸 (𝑇 ) = {0F} and no eigenvectors exist.

• For the (counterclockwise) rotation-by-90-degrees operator 𝑇 ∈ L(R2), 𝐸 (𝑇 ) = ∅ and consequently no eigenvectors
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exist.

As we saw, there are many more eigenvectors than eigenvalues, so would they “collide?” That is, how do eigenvectors
associated with different eigenvalues act? It turns out that they’re nicely independent.

Proposition 6.5. Suppose𝑇 ∈ L(𝑉 ). If 𝜆1, · · · , 𝜆𝑛 are distinct eigenvalues of𝑇 and 𝑣1, · · · , 𝑣𝑛 are corresponding eigenvec-
tors respectively, then 𝑣1, · · · , 𝑣𝑛 is linearly independent.

This proof is far from trivial. The big idea is to use proof by contradiction and invoke the powerful linear dependence
lemma.

Proof. Let F be the field associated with 𝑉 . Suppose for contradiction that 𝑣1, · · · , 𝑣𝑛 is linearly dependent. By Lemma 3.7,
fix the smallest 𝑗 ∈ {1, · · · , 𝑛} such that 𝑣 𝑗 ∈ span(𝑣1, · · · , 𝑣 𝑗−1). Note that 𝑣1, · · · , 𝑣 𝑗−1 is linearly independent.

Fix constants 𝑐1, · · · , 𝑐 𝑗−1 ∈ F such that 𝑣 𝑗 = 𝑐1 · 𝑣1 + · · · + 𝑐 𝑗−1 · 𝑣 𝑗−1. Applying 𝑇 to both sides,

𝜆 𝑗 · 𝑣 𝑗 = 𝑐1𝜆1 · 𝑣1 + · · · + 𝑐 𝑗−1𝜆 𝑗−1 · 𝑣 𝑗−1.

If we alternatively multiply by 𝜆 𝑗 on both sides,

𝜆 𝑗 · 𝑣 𝑗 = 𝑐1𝜆 𝑗 · 𝑣1 + · · · + 𝑐 𝑗−1𝜆 𝑗 · 𝑣 𝑗−1.

Subtracting the two yields
𝑐1 (𝜆1 − 𝜆 𝑗 ) · 𝑣1 + · · · + 𝑐 𝑗−1 (𝜆 𝑗−1 − 𝜆 𝑗 ) · 𝑣 𝑗−1 = 0.

The linear independence of 𝑣1, · · · , 𝑣 𝑗−1 forces 𝑐1 (𝜆1 − 𝜆 𝑗 ) = · · · = 𝑐 𝑗−1 (𝜆 𝑗−1 − 𝜆 𝑗) = 0. Because the eigenvalues are distinct,
𝜆1 − 𝜆 𝑗 , · · · , 𝜆 𝑗−1 − 𝜆 𝑗 are all nonzero, so 𝑐1 = · · · = 𝑐 𝑗−1 = 0, which implies 𝑣 𝑗 = 𝑐1 · 𝑣1 + · · · + 𝑐 𝑗−1 · 𝑣 𝑗−1 = 0, a contradiction
since eigenvectors are non-zero. □

Corollary 6.6. Suppose 𝑉 is finite-dimensional. Then, any 𝑇 ∈ L(𝑉 ) has at most dim𝑉 distinct eigenvalues.

Proof. If 𝑇 ∈ L(𝑉 ) has𝑚 > dim𝑉 distinct eigenvalues, then they correspond to𝑚 linearly independent eigenvectors. But
Proposition 3.14,𝑚 ≤ dim𝑉 , a contradiction. □

Albeit not the perfect time, we will now introduce the quotient operator 𝑇 /𝑈 on an invariant subspace𝑈 .

Proposition 6.7. Suppose 𝑇 ∈ L(𝑉 ). To each invariant subspace 𝑈 under 𝑇 , we may associate a quotient operator 𝑇 /𝑈 ∈
L(𝑉 /𝑈 ) by (𝑇 /𝑈 ) (𝑣 +𝑈 ) B 𝑇 (𝑣) +𝑈 .

To use this definition, we need 𝑇 (𝑣) +𝑈 to make sense; that’s why the codomain of 𝑇 must also be in 𝑉 , so 𝑇 must be an
operator. And if 𝑈 is not invariant, this definition might not be consistent. By the way, we also need to show that 𝑇 /𝑈 is
linear.

Proof. Suppose 𝑣1, 𝑣2 ∈ 𝑉 are such that 𝑣1 +𝑈 = 𝑣2 +𝑈 ; that is, 𝑣1 − 𝑣2 ∈ 𝑈 . Then, 𝑇 (𝑣1) −𝑇 (𝑣2) = 𝑇 (𝑣1 − 𝑣2) ∈ 𝑈 as well,
so 𝑇 (𝑣1) +𝑈 = 𝑇 (𝑣2) +𝑈 . Therefore, the definition is consistent.

We now show linearity. Observe that (𝑇 /𝑈 ) (𝑐 · (𝑣1 + 𝑈 ) + (𝑣2 + 𝑈 )) = (𝑇 /𝑈 ) ((𝑐 · 𝑣1 + 𝑣2) + 𝑈 ) = 𝑇 (𝑐 · 𝑣1 + 𝑣2) + 𝑈 =

(𝑐 ·𝑇 (𝑣1) +𝑇 (𝑣2)) +𝑈 = 𝑐 · (𝑇 (𝑣1) +𝑈 ) + (𝑇 (𝑣2) +𝑈 ) = 𝑐 · (𝑇 /𝑈 ) (𝑣1) + (𝑇 /𝑈 ) (𝑣2). Therefore, 𝑇 is indeed linear. □

One main aspect as to why eigen-stuff are useful is because they work well with repeatedly applying operators: this is
repeatedly multiplying by the eigenvalue.

Definition 6.8. For an operator 𝑇 ∈ L(𝑉 ) and a non-negative integer 𝑛 ∈ Z≥0, define the power

𝑇𝑛 B 𝑇 ◦ · · · ◦𝑇︸      ︷︷      ︸
𝑛 times

.
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If 𝑛 = 0, then 𝑇𝑛 B 𝐼 .

We also introduce a new piece of machinery: the polynomial of an operator.

Definition 6.9. Suppose 𝑉 is an F-vector space, 𝑇 ∈ L(𝑉 ), and 𝑝 ∈ P (F). Fix 𝑝 (𝑥) = 𝑎0 + · · · + 𝑎𝑛𝑥𝑛 . Then, define

𝑝 (𝑇 ) B 𝑎0𝐼 + · · · + 𝑎𝑛𝑇𝑛 ∈ L(𝑉 ).

This is where the previous results on polynomials come in handy: this will help us prove the existence of an eigenvalue for
non-trivial, finite-dimensional complex vector spaces.

Theorem 6.10. Suppose 𝑉 is a finite-dimensional, non-zero complex vector space. Then any operator 𝑇 ∈ L(𝑉 ) has at least
one eigenvalue.

Proof. Fix𝑇 ∈ L(𝑉 ). Define a map 𝑓𝑇 : P (C) → L(𝑉 ) by 𝑓𝑇 (𝑝) B 𝑝 (𝑇 ). It is not hard to see that 𝑓𝑇 is a linear map from an
infinite-dimensional vector space to a finite-dimensional vector space, which cannot be injective.1

Thus, fix a nontrivial (i.e. non-constant) 𝑝 ∈ null 𝑓𝑇 \{0} such that 𝑝 (𝑇 ) = 0. By Corollary 5.3, fix 𝑐, 𝜆1, · · · , 𝜆𝑚 ∈ C such that
𝑝 (𝑧) = 𝑐 · (𝑧 − 𝜆1) · · · (𝑧 − 𝜆𝑚). It is not hard to see that 𝑝 (𝑇 ) = 𝑐 · (𝑇 − 𝜆1𝐼 ) · · · (𝑇 − 𝜆𝑚𝐼 ) ∈ L(𝑉 ).

Suppose for contradiction 𝑇 − 𝜆𝑖 · 𝐼 is injective for all 𝑖 ∈ {1, · · · ,𝑚}. Then, for any 𝑣 ∈ 𝑉 \{0},

(𝑇 − 𝜆1𝐼 ) (𝑣), (𝑇 − 𝜆2𝐼 ) (𝑇 − 𝜆1𝐼 ) (𝑣), · · · , (𝑇 − 𝜆𝑚𝐼 ) · · · (𝑇 − 𝜆1𝐼 ) (𝑣)

must all be non-zero, so 𝑝 (𝑇 ) (𝑣) ≠ 0, which contradicts 𝑝 (𝑇 ) = 0. Thus,𝑇 has at least one eigenvalue 𝜆𝑖 by Proposition 6.3;
i.e., the 𝑖 for which 𝑇 − 𝜆𝑖 · 𝐼 is not injective. □

Note that both premises are important:

• In a real vector space, even if it’s finite-dimensional, operators may not have eigenvalues. For example, the 90°
counterclockwise rotation matrix in R2 has no eigenvalue (think geometrically).

• In an infinite-dimensional vector space, even if it’s complex, operators may not have eigenvalues. For example, take
𝑉 = P (R) and let 𝑇 ∈ L(𝑉 ) be defined by 𝑇 (𝑝) (𝑥) B 𝑥 · 𝑝′ (𝑥). Then, 𝑇 has no eigenvalues (why?).

A final note that relates to quantum mechanics: Solving Schrödinger’s equation is essentially solving the eigenvalue prob-
lem

�̂� |𝜓 ⟩ = 𝐸 |𝜓 ⟩

with a given operator �̂� (the Hamiltonian) to identify the eigenvalue 𝐸 (the energy) and the eigenvector |𝜓 ⟩ (the stationary
state). The operator is on a space of (wave) functions, which is an infinite-dimensional complex vector space.

In infinite dimensions, operatorsmay have a finite number of eigenvalues, countablymany eigenvalues, or even uncountably
many eigenvalues. It is even possible that 𝐸 (𝑇 ) = F.

6.2 Upper-Triangular Matrices

From MATH 220, we know that for upper-triangular matrices, we can just read off its diagonals for eigenvalues. This result
is by no means a coincidence, and we’ll explore this further.

Definition 6.11. A square matrix 𝐴 ∈ F𝑛,𝑛 is said to be upper-triangular if for any 𝑖 ∈ {1, · · · , 𝑛} and 𝑗 ∈ {𝑖 + 1, · · · , 𝑛},
𝐴𝑖, 𝑗 = 0.

1To see this, first note that an injective map takes independent vectors to independent vectors (the converse is true even for non-injective maps).
Then, a sufficiently long independent list from the infinite-dimensional domain must be mapped to an independent list that is prohibitively long in the
finite-dimensional codomain, thus producing a contradiction.
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For an upper-triangular matrix𝐴, its 𝑖-th column has zeros after the 𝑖-th entry, so𝑇 (𝑣𝑖 ) is a combination of 𝑣1, · · · , 𝑣𝑖 where
𝐴 = M(𝑇 ). Extending this intuition a bit more, we have this result:

Proposition 6.12. Let 𝑉 be a finite-dimensional, non-zero complex vector space and 𝑣1, · · · , 𝑣𝑛 a basis of 𝑉 . Then, the
following are equivalent.

• M(𝑇 ) is upper-triangular;

• 𝑇 (𝑣 𝑗 ) ∈ span(𝑣1, · · · , 𝑣 𝑗 ) for any 𝑗 ∈ {1, · · · , 𝑛};

• span(𝑣1, · · · , 𝑣 𝑗 ) is invariant under 𝑇 for any 𝑗 ∈ {1, · · · , 𝑛}.

We will omit the proof; it is quite straightforward.

The reason upper-triangular matrices are of interest to us is because of its intimate relationship with eigenvalues: in a sense,
almost every operator has an upper-triangular matrix for some basis.

Theorem 6.13. Let𝑉 be a finite-dimensional, non-zero complex vector space and𝑇 ∈ L(𝑉 ). Then, there exists some basis of𝑉
under which M(𝑇 ) is upper-triangular.

Proof. Let 𝑛 = dim𝑉 be the dimension of 𝑉 , upon which we perform induction.

Base case. Suppose 𝑛 = 1. Then, any 𝑛 × 𝑛 matrix is trivially upper-triangular.

Inductive case. Suppose now that any operator on any (𝑛 − 1)-dimensional complex vector space admits an upper-
triangular matrix representation, where 𝑛 ∈ Z≥2. Let 𝑉 be an 𝑛-dimensional complex vector space and 𝑇 ∈ L(𝑉 ). By
Theorem 6.10, fix an eigenvalue 𝜆1 ∈ C and an associated eigenvector 𝑣1 ∈ 𝑉 \{0}. Let 𝑈 B span(𝑣1), which is a 1-
dimensional subspace; hence,𝑉 /𝑈 has dimension dim𝑉 −dim𝑈 = 𝑛−1, so𝑇 /𝑈 ∈ L(𝑉 /𝑈 ) admits an upper-triangular ma-
trix representationM(𝑇 /𝑈 ) under some basis 𝑣2+𝑈 , · · · , 𝑣𝑛+𝑈 . By Proposition 6.12, we have for an arbitrary 𝑖 ∈ {2, · · · , 𝑛}
that (𝑇 /𝑈 ) (𝑣𝑖 +𝑈 ) = 𝑇 (𝑣𝑖 ) +𝑈 ∈ span(𝑣2 +𝑈 , · · · , 𝑣𝑖 +𝑈 ); that is, for some 𝑐2, · · · , 𝑐𝑖 ∈ C,

𝑇 (𝑣𝑖 ) +𝑈 = 𝑐2 · (𝑣2 +𝑈 ) + · · · + 𝑐𝑖 · (𝑣𝑖 +𝑈 ) = (𝑐2 · 𝑣2 + · · · + 𝑐𝑖 · 𝑣𝑖 ) +𝑈 ,

which implies 𝑇 (𝑣𝑖 ) − (𝑐2 · 𝑣2 + · · · + 𝑐𝑖 · 𝑣𝑖 ) ∈ 𝑈 by Lemma 4.26. Because 𝑈 is a 1-dimensional subspace, we must have
𝑇 (𝑣𝑖 ) − (𝑐2 · 𝑣2 + · · · +𝑐𝑖 · 𝑣𝑖 ) = 𝜆 · 𝑣1 for some 𝜆 ∈ C, so𝑇 (𝑣𝑖 ) ∈ span(𝑣1, · · · , 𝑣𝑖 ). At the same time,𝑇 (𝑣1) = 𝜆1 · 𝑣1 ∈ span(𝑣1).

If 𝑣2, · · · , 𝑣𝑛 are linearly dependent, then 𝑣2 +𝑈 , · · · , 𝑣𝑛 +𝑈 would also be linearly dependent. Taking the contrapositive, we
conclude that 𝑣2, · · · , 𝑣𝑛 is linearly independent. If 𝑣1 ∈ span(𝑣2, · · · , 𝑣𝑛), then

0𝑉 /𝑈 = 𝑣1 +𝑈 ∈ span(𝑣2 +𝑈 , · · · , 𝑣𝑛 +𝑈 ),

a contradiction. Thus, by Lemma 3.7, 𝑣1, · · · , 𝑣𝑛 is a length-𝑛 linearly independent list in 𝑉 , and as such must be a basis.
Therefore, by Proposition 6.12, M(𝑇 ) is upper-triangular with respect to the basis 𝑣1, · · · , 𝑣𝑛 . □

If we have found an upper-triangular matrix representation of 𝑇 , then a lot of the properties are evident. Of these, a useful
fact is that𝑇 is invertible, or an isomorphism, if and only if all diagonals of the upper-triangularM(𝑇 ) are non-zero.

Proposition 6.14. Let 𝑉 be a vector space and 𝑇 ∈ L(𝑉 ). Suppose M(𝑇 ) is upper-triangular with respect to a basis
𝑣1, · · · , 𝑣𝑛 . Then, 𝑇 is invertible if and only if M(𝑇 )𝑖,𝑖 ≠ 0 for all 𝑖 ∈ {1, · · · , 𝑛}.

Proof. Denote with 𝜆𝑖 BM(𝑇 )𝑖,𝑖 for 𝑖 ∈ {1, · · · , 𝑛} the 𝑖-th diagonal entry.

“If” direction. Suppose 𝜆𝑖 ≠ 0 always. By the upper-triangular representation, in particular, 𝑇 (𝑣1) = 𝜆1 · 𝑣1, so 𝑇 (𝑣1/𝜆1) =
𝑣1 ∈ range𝑇 . More generally, for any 𝑖 ∈ {1, · · · , 𝑛}, 𝑣𝑖 ∈ range𝑇 .
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To show this, we perform induction on 𝑖 = 1, · · · , 𝑛, where the base case has already been shown. Now suppose inductively
that 𝑣1, · · · , 𝑣𝑖 ∈ range𝑇 . Observe that

𝑇 (𝑣𝑖 ) = M(𝑇 )1,1 · 𝑣1 + · · · +M(𝑇 )𝑖−1,𝑖−1 · 𝑣𝑖−1 + 𝜆𝑖 · 𝑣𝑖 .

Because each 𝑣1, · · · , 𝑣𝑖−1 is in range𝑇 , we may fix constants for their respective linear combinations. Summing them, we
have constants 𝑐1, · · · , 𝑐𝑖−1 ∈ F such that

𝑇 (𝑣𝑖 ) = 𝑐1 ·𝑇 (𝑣1) + · · · + 𝑐𝑖−1 ·𝑇 (𝑣𝑖−1) + 𝜆𝑖 · 𝑣𝑖 ,

so 𝑇 (𝑣𝑖/𝜆𝑖 − 𝑐1/𝜆𝑖 · 𝑣1 − · · · − 𝑐𝑖−1/𝜆𝑖 · 𝑣𝑖−1) = 𝑣𝑖 ∈ range𝑇 .

Thus, range𝑇 contains a basis of 𝑉 so range𝑇 = 𝑉 . Then, by Corollary 4.20, 𝑇 is invertible.

“Only if” direction. Suppose now 𝜆 𝑗 = 0 for some 𝑗 ∈ {1, · · · , 𝑛}. Then, 𝑇 (𝑣 𝑗 ) ∈ span(𝑣1, · · · , 𝑣 𝑗−1), and for any pre-
vious 𝑖 ∈ {1, · · · , 𝑗 − 1}, we have 𝑇 (𝑣𝑖 ) ∈ span(𝑣1, · · · , 𝑣𝑖 ) ⊂ span(𝑣1, · · · , 𝑣 𝑗−1). Therefore, we have a total of 𝑗 vectors
𝑇 (𝑣1), · · · ,𝑇 (𝑣 𝑗 ) in a ( 𝑗 − 1)-dimensional subspace span(𝑣1, · · · , 𝑣 𝑗−1), so the vectors must be linearly dependent. An in-
jective linear function maps linearly independent vectors to linearly independent vectors, so 𝑇 cannot be injective. By
Corollary 4.20, 𝑇 is not invertible. □

Surprisingly, the very famous (and non-trivial) fact that the diagonal elements of an upper-triangular matrix are exactly its
eigenvalues comes immediately after this result; the proof is so simple.

Corollary 6.15. Let 𝑉 be a finite-dimensional vector space and suppose 𝑇 ∈ L(𝑉 ) has an upper-triangular matrix under
some basis 𝑣1, · · · , 𝑣𝑛 of 𝑉 . Then, every diagonal element is an eigenvalue of 𝑇 ; that is,

∀𝑖 ∈ {1, · · · , 𝑛}, M(𝑇 )𝑖,𝑖 ∈ 𝐸 (𝑇 ).

Proof. Let 𝑖 ∈ {1, · · · , 𝑛} be arbitrary and let 𝜆𝑖 BM(𝑇 )𝑖,𝑖 . Then, naturally, M(𝑇 − 𝜆𝑖 · 𝐼 )𝑖,𝑖 = 0, so by Proposition 6.14, 𝑇
is not invertible—and hence not injective (Corollary 4.20). Thus, 𝜆𝑖 ∈ 𝐸 (𝑇 ) by Proposition 6.3. □

6.3 Diagonal Matrices

What about diagonal matrices? This ties into the 𝐴 = 𝑃−1Λ𝑃 decomposition for which Λ is diagonal, and we’ve already
seen in MATH 220 how this can be used to compute high powers of 𝐴 easily.

Note its form: I claim that surroundingΛ by 𝑃−1 and 𝑃 is exactly a change of basis! If𝐴 = M(𝑇 ) under some basis 𝑒1, · · · , 𝑒𝑛 ,
then Λ is the matrix of 𝑇 under the basis 𝑃 (𝑒1), · · · , 𝑃 (𝑒𝑛). So, similar to upper-triangular matrices, we only need to see if
the matrix of an operator can be diagonal under some basis.

We’ll first lay out the definition.

Definition 6.16. A matrix 𝐴 ∈ F𝑛,𝑛 is said to be diagonal if ∀𝑖, 𝑗 ∈ {1, · · · , 𝑛}, 𝑖 ≠ 𝑗 ⇒ 𝐴𝑖, 𝑗 = 0. An operator 𝑇 ∈ L(𝑉 )
over a finite-dimensional vector space 𝑉 is said to be diagonalizable if there exists a basis 𝑣1, · · · , 𝑣𝑛 under which M(𝑇 ) is
diagonal.

Unlike “upper-triangularizability,” the diagonalizability of a matrix isn’t guaranteed even in finite-dimensional, non-zero
complex vector spaces. But before we justify this with an example, we’ll need some potent machinery.

Proposition 6.17. Let𝑉 be a finite-dimensional vector space and let {𝜆1, · · · , 𝜆𝑚} = 𝐸 (𝑇 ). Then,𝑇 is diagonalizable if and
only if there exist eigenvectors 𝑣1, · · · , 𝑣𝑛 of 𝑇 that form a basis of 𝑉 .

Proof. We opt for a direct proof in each direction.
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“If” direction. Suppose 𝑣1, · · · , 𝑣𝑛 are eigenvectors of 𝑇 associated with (possibly repeated) eigenvalues 𝜆1, · · · , 𝜆𝑛 that
form a basis of𝑉 . Then, under this basis 𝑣1, · · · , 𝑣𝑛 , we have by definition𝑇 (𝑣𝑖 ) = 𝜆𝑖 · 𝑣𝑖 for all 𝑖 ∈ {1, · · · , 𝑛}. Thus, the 𝑖-th
column of M(𝑇 ) is the tuple

(0, · · · , 0, 𝜆𝑖︸︷︷︸
the 𝑖-th position

, 0, · · · , 0).

By definition, then, M(𝑇 ) is diagonal, and thus 𝑇 is diagonalizable.

“Only if” direction. Now suppose instead that 𝑇 is diagonalizable. Fix a basis 𝑣1, · · · , 𝑣𝑛 such that M(𝑇 ) is diagonal,
whereby we may fix 𝜆1, · · · , 𝜆𝑛 ∈ F such that 𝑇 (𝑣𝑖 ) = 𝜆𝑖 · 𝑣𝑖 for each 𝑖 ∈ {1, · · · , 𝑛}. Because 𝑣1, · · · , 𝑣𝑛 is a basis, it must be
a linearly independent list. In particular, no 𝑣𝑖 = 0 for 𝑖 ∈ {1, · · · , 𝑛}. Thus, by definition, 𝑣1, · · · , 𝑣𝑛 are all eigenvectors of
𝑇 , associated with 𝜆1, · · · , 𝜆𝑛 respectively. □

We have a very useful corollary:

Corollary 6.18. Let𝑉 be a finite-dimensional vector space and suppose𝑇 ∈ L(𝑉 ) has dim𝑉 distinct eigenvalues. Then,𝑇
is diagonalizable.

Proof. Let 𝑛 B dim𝑉 and suppose 𝜆1, · · · , 𝜆𝑛 are the 𝑛 distinct eigenvalues of𝑇 . By definition, we may fix a 𝜆𝑖 -eigenvector
𝑣𝑖 ∈ 𝑉 \{0} for each 𝑖 ∈ {1, · · · , 𝑛}. By Proposition 6.5, 𝑣1, · · · , 𝑣𝑛 must be linearly independent. Thus, 𝑣1, · · · , 𝑣𝑛 is a length-𝑛,
linearly independent list of vectors, which must be a basis of 𝑉 by Proposition 3.14. □

The converse is not true! Consider, for example, the matrix

©«
1 0 0
0 1 0
0 0 0

ª®¬ ,
which is by definition a diagonalizable operator on R3. This is also an upper-triangular matrix, so its eigenvalues are 1 and
0 (and no others). It doesn’t have 3 distinct eigenvalues, but it is still diagonalizable.

When we do linear algebra, we want abstract structures beyond those on R𝑛 uncovered in MATH 220. A crucial piece is
the direct sum. We will first state an intuitively true but important lemma.

Lemma 6.19. Suppose 𝑇 ∈ L(𝑉 ). If 𝜆1, · · · , 𝜆𝑘 are distinct eigenvalues of 𝑇 , then

𝐸 (𝑇, 𝜆1) + · · · + 𝐸 (𝑇, 𝜆𝑘 )

is a direct sum.

Proof. Let𝑢1 ∈ 𝐸 (𝑇, 𝜆1), · · · , 𝑢𝑘 ∈ 𝐸 (𝑇, 𝜆𝑘 ) and suppose𝑢1 + · · · +𝑢𝑘 = 0. Let𝑢𝑖1 , · · · , 𝑢𝑖 𝑗 be all the 𝑗 non-zero vectors among
𝑢1, · · · , 𝑢𝑘 , so

1 · 𝑢𝑖1 + · · · + 1 · 𝑢𝑖 𝑗 = 0,

where 𝑢𝑖1 , · · · , 𝑢𝑖 𝑗 must be linearly independent by Proposition 6.5. If 𝑗 > 0, then this is impossible, because this equation
would be a non-trivial linear combination that equals 0.

Therefore, 𝑗 = 0; that is, 𝑢1 = · · · = 𝑢𝑘 = 0. Therefore, by Proposition 2.11, the sum 𝐸 (𝑇, 𝜆1) + · · · + 𝐸 (𝑇, 𝜆𝑘 ) is direct. □

Note that𝑉 doesn’t have to be finite-dimensional here! So long as the eigenvalues are distinct, this results holds. This, then,
allows us to tie in diagonalizability with the abstract structure of the direct sum.

Proposition 6.20. Let 𝑉 be a finite-dimensional vector space and suppose 𝜆1, · · · , 𝜆𝑘 are all the (distinct) eigenvalues of
𝑇 ∈ L(𝑉 ). Then, 𝑇 is diagonalizable if and only if 𝐸 (𝑇, 𝜆1) ⊕ · · · ⊕ 𝐸 (𝑇, 𝜆𝑘 ) = 𝑉 .
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Proof. Let F be the field associated with 𝑉 .

“If” direction. Suppose 𝐸 (𝑇, 𝜆1) ⊕ · · · ⊕ 𝐸 (𝑇, 𝜆𝑘 ) = 𝑉 . For each 𝜆𝑖 where 𝑖 ∈ {1, · · · , 𝑘}, we may fix a basis 𝑣 (𝑖 )1 , · · · , 𝑣 (𝑖 )𝑚𝑖

of 𝐸 (𝑇, 𝜆𝑖 ) � F𝑚𝑖 . First, note that 𝑚1 + · · · +𝑚𝑘 = 𝑛 B dim𝑉 by Proposition 3.22. Now, because the direct sum is 𝑉 ,
𝑣
(1)
1 , · · · , 𝑣 (1)𝑚1 , · · · , 𝑣

(𝑘 )
1 , · · · , 𝑣 (𝑘 )𝑚𝑘

must span 𝑉 . Therefore, this list of eigenvectors is a basis of 𝑉 by Proposition 3.12.

“Only if” direction. Now suppose instead that𝑇 is diagonalizable. Fix a basis 𝑣1, · · · , 𝑣𝑛 of𝑉 such thatM(𝑇 ) is diagonal,
so by definition 𝑇 (𝑣𝑖 ) = ℓ𝑖 · 𝑣𝑖 for each 𝑖 ∈ {1, · · · , 𝑛}, where ℓ𝑖 B M(𝑇 )𝑖,𝑖 ∈ 𝐸 (𝑇 ). Because a diagonal matrix is trivially
upper-triangular, we conclude that {ℓ1, · · · , ℓ𝑛} = {𝜆1, · · · , 𝜆𝑘 }. Thus, for any 𝑣 ∈ 𝑉 we may fix 𝑐1, · · · , 𝑐𝑛 ∈ 𝑉 such that

𝑣 = 𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛 ∈ 𝐸 (𝑇, 𝑐1) + · · · + 𝐸 (𝑇, 𝑐𝑛) = 𝐸 (𝑇, 𝜆1) ⊕ · · · ⊕ 𝐸 (𝑇, 𝜆𝑘 ).

The proof is complete. □

Note that 𝑘 ≠ 𝑛 in general! For example, take a look again at

©«
1 0 0
0 1 0
0 0 0

ª®¬ .
To continue the previous claim that diagonalizability cannot really be guaranteed for general cases, consider the operator
𝑇 ∈ C2 defined by 𝑇 (𝑤, 𝑧) B (𝑧, 0). We’ll work it out in full detail:

Firstly, 𝐸 (𝑇 ) = {0}: let 𝜆 ∈ C be arbitrary and suppose (𝑤, 𝑧) ∈ C2\{0} is such that 𝑇 (𝑤, 𝑧) = (𝑧, 0) = 𝜆 · (𝑤, 𝑧); that is,
𝑧 = 𝜆𝑤 and 0 = 𝜆𝑧. If 𝜆 ≠ 0, then 0 = 𝜆𝑧 implies 𝑧 = 0, so 𝑧 = 0 = 𝜆𝑤 and thus 𝑤 = 0 as well, a contradiction. Now, 0 is
indeed an eigenvalue, because 𝑇 (1, 0) = (0, 0) = 0 · (1, 0), where (1, 0) ∈ C2\{0}. More specifically,

𝐸 (𝑇, 0) = {(𝑤, 𝑧) ∈ C2 | (𝑧, 0) = (0, 0)} = {(𝑤, 0) | 𝑤 ∈ C} = span((1, 0)) .

Now, the sum of all eigenspaces is simply 𝐸 (𝑇, 0) = span((1, 0)) itself, which is only 1-dimensional and cannot possibly
equal 𝑉 = C2. Thus, by Proposition 6.20, 𝑇 is not diagonalizable.

7 Notes on the Determinant and the Trace

We’ll first say that these concepts only make sense for finite-dimensional operators! That’s why we’ve always introduced
them in terms of square matrices.

7.1 The Determinant

Determinants are used to describe area- and volume-like stuff. For example, one of its biggest uses are in multivariable
calculus, where the Jacobian (determinant) is used when we do change of variables, which describes how the infinitesimal
area/volume changes for the given parametrization.

The determinant also keeps track of the “orientation” of the space. For example,
(
1 0
0 1

)
has determinant 1, but when you

swap the columns,
(
0 1
1 0

)
has determinant -1. This does make sense intuitively: we basically flipped the space F2 with

respect to the diagonal line 𝑦 = 𝑥 .

We’ll start with the familiar formula from MATH 220, which in a 3 × 3 case has:������𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ 𝑖

������ = 𝑎 ·
����𝑒 𝑓

ℎ 𝑖

���� − 𝑏 · ����𝑑 𝑓

𝑔 𝑖

���� + 𝑐 · ����𝑑 𝑒

𝑔 ℎ

���� = 𝑎𝑒𝑖 − 𝑎𝑓 ℎ − 𝑏𝑑𝑖 + 𝑏𝑓 𝑔 + 𝑐𝑑ℎ − 𝑐𝑒𝑔.
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Let’s look at the first term in a bit more detail. The formula crosses out the row and the column where 𝑎 is, and does this
recursively. So in each term of the final expansion, we have elements from separate rows and columns multiplied together.
There are, naturally, 3! such terms. But how do we account for the pluses and minuses?

Like we have noted above, this keeps track of the “orientation,” or the flipping, of a space. While not immediately obvious,
this turns out to be related to how we get the separate rows and columns. We’ll first state the general Leibniz’s formula,
and go from there.

Definition 7.1. For a positive integer 𝑛 ∈ N+, let 𝑆𝑛 denotes the set (of size 𝑛!) of all permutations of the set {1, · · · , 𝑛}; that
is, the set of bijections from {1, · · · , 𝑛} to {1, · · · , 𝑛}. We typically write 𝜎𝑖 instead of 𝜎 (𝑖), and we can write a permutation
concisely as a tuple (𝜎1, · · · , 𝜎𝑛).

The sign of a permutation 𝜎 ∈ 𝑆𝑛 , denoted as sgn𝜎 , is defined as (−1)𝑘 , where 𝑘 is the number of swaps to make to get from
(1, · · · , 𝑛) to (𝜎1, · · · , 𝜎𝑛).

Some notes on the definition above:

• We can replace the bijection requirement with the equivalent condition that 𝜎1, · · · , 𝜎𝑛 is just 1, · · · , 𝑛 written in a
different order; in other words, {1, · · · , 𝑛} = {𝜎1, · · · , 𝜎𝑛}.

• The 𝑘 for a permutation is not unique, but they all give the same (−1)𝑘 , which makes the definition consistent. For
example, (1, 3, 2) ∈ 𝑆3 can have 𝑘 = 1, when we swap the 2 and the 3 in (1, 2, 3) once, or 𝑘 = 3, if we swap them three
times. While not trivial, we skip the proof due to irrelevance.

• The sign can be alternatively defined as

sgn𝜎 B
��{(𝑖, 𝑗) ∈ {1, · · · , 𝑛} × {1, · · · , 𝑛} | 𝑖 < 𝑗, 𝜎𝑖 > 𝜎 𝑗 }

�� ,
the number of “inversion” pairs in 𝜎 .

Definition 7.2. Let 𝐴 ∈ F𝑛,𝑛 . The determinant of 𝐴, denoted as det𝐴 or |𝐴|, is defined as∑︁
𝜎∈𝑆𝑛

(
sgn𝜎 ·

𝑛∏
𝑖=1

𝐴𝜎𝑖 ,𝑖

)
.

Yikes… That looks terrible, but the good thing about this definition (instead of, say the one I gave above) is that we have
explicitly each expanded term, which makes it easier to prove stuff about the determinant.

This definition is not as contrived as it may seem: in fact, this is the only definition of a determinant that satisfies the
following properties (see Wikipedia):

• The determinant is multilinear; that is, for any 𝑖 ∈ {1, · · · , 𝑛}, fixing all the other columns 1, · · · , 𝑖 − 1, 𝑖 + 1, · · · , 𝑛, the
determinant as the function of column 𝑖 (from F𝑛 to F) is linear;

• The determinant is alternating; that is, switching any two columns will reverse the sign of the determinant;

• The determinant of any identity matrix 𝐼𝑛 is 1.

The last property makes sense, because the “hyper-volume” of a hyper-cube is obviously 1 · · · 1 = 1. But how do we make
sense of the other properties? We can, in fact, turn to geometric intuition.

For multilinearity, think about two parallelograms with the same height.

Fixing 𝑢 constant, clearly you should add up the areas. That is,����𝑢1 (𝑣1 + 𝑣2)1
𝑢2 (𝑣1 + 𝑣2)2

���� = ����𝑢1 (𝑣1)1
𝑢2 (𝑣1)2

���� + ����𝑢1 (𝑣2)1
𝑢2 (𝑣2)2

���� .
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The same goes for scalar multiples (just think of 𝑣2 = 𝑣1, in which case that would be doubling the second column).

What about the alternating property? Well, swapping any two column “flips” the space: consider the matrices(
1 0
0 1

)
−→

(
0 1
1 0

)
.

By swapping the two columns, we are effectively flipping the orientation of the resulting shape, so it makes sense that the
determinant gets multiplied by −1.

Here are some other properties of the determinant:

• (Homogeneity) det(𝑐 · 𝐴) = 𝑐𝑛 · det𝐴 (each column get multiplied by 𝑐 , so what does multilinearity say?);

• (Alternating) If any two columns of 𝐴 are equal, then det𝐴 = 0 (what does the alternating property say if you swap
the two identical columns?);

• Adding (a scalar multiple of) any column to any other column doesn’t change the determinant (think about multilin-
earity and the alternating property);

• If any column is zero, then det𝐴 = 0 (what happens if you add any other column to this column?).

These are just some immediate consequences of the definition we have. But that’s not all that the determinant has to
offer.

Arguably the most amazing property of the determinant is its multiplicativity.

Theorem 7.3. Let 𝐴, 𝐵 ∈ F𝑛,𝑛 . Then,
det(𝐴𝐵) = det𝐴 · det𝐵.

I will have to omit the proof here: an elementary proof exists by checking the definition, but this conveniently overlooks
the inherent structure that the determinant has. Evan Chen’s Napkin has an elegant explanation for why this is: it’s so
much more than this innocent formula seemingly entails!

This is so powerful that we have an extremely strong corollary.

Corollary 7.4. Let 𝐴 ∈ F𝑛,𝑛 . When viewed as a linear operator 𝐴 ∈ L(F𝑛), 𝐴 is invertible if and only if

det𝐴 ≠ 0.

We’ll prove only the “only if” direction. For the “if” direction, this can be shown by proving Cramer’s rule—which in my
humble opinion is also not that theoretically interesting.

Proof. “Only if” direction. Suppose 𝐴 is invertible. Suppose for the sake of contradiction that det𝐴 = 0. Then, 𝐴𝐴−1 = 𝐼 ,
so det(𝐴) det(𝐴−1) = 0. But this must equal det(𝐴𝐴−1) = det 𝐼 = 1, a contradiction. □

The multiplicativity of the determinant means that the determinant of any matrix of a linear operator is the same. This
allows us to define the determinant of such an operator.

Definition 7.5. Let 𝑉 be a finite-dimensional vector space and 𝑇 ∈ L(𝑉 ). The determinant of 𝑇 is defined as the determi-
nant of the matrix of 𝑇 under any basis.
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It is not immediately obvious that this definition is consistent: different matrices should, in general, have different determi-
nants; so how can we assert they’re always the same?

We need to introduce the concept of change-of-basis matrices.

Definition 7.6. Suppose𝑉 is a finite-dimensional vector space over F. Let V = {𝑣1, · · · , 𝑣𝑛} andW = {𝑤1, · · · ,𝑤𝑛} be two
bases of 𝑉 . The change-of-basis matrix from V toW , denoted as 𝐶W←V ∈ F𝑛,𝑛 , is defined as

𝐶W←V =
©«
𝑐1,1 · · · 𝑐1,𝑛
...

. . .
...

𝑐𝑛,1 · · · 𝑐𝑛,𝑛

ª®®¬ ,
where 𝑣𝑖 = 𝑐1,𝑖 ·𝑤1 + · · · + 𝑐𝑛,𝑖 ·𝑤𝑛 .

Indeed, the 𝑖-th column of 𝐶W←V consists of the coordinates 𝑣𝑖 in the basis W , as expected. We’re trying to go from basis
V to basis W , so we should definitely be representing old basis (namely, 𝑣1, · · · , 𝑣𝑛) in terms of𝑤1, · · · ,𝑤𝑛 .

Proposition 7.7. Suppose 𝑉 is a finite-dimensional vector space over F. Let V = (𝑣1, · · · , 𝑣𝑛) and W = (𝑤1, · · · ,𝑤𝑛) be
two bases of 𝑉 . Then, 𝐶W←V is invertible, and 𝐶−1W←V = 𝐶V←W .

The proof is obvious from the definition. Now that we have this machinery, we can finally prove the consistency of the
definition:

Proof. Note that MW (𝑇 ) = 𝐶W←V ·MV (𝑇 ) ·𝐶V←W , so

detMW (𝑇 ) = det(𝐶W←V ·MV (𝑇 ) ·𝐶V←W )
= det𝐶W←V · detMV (𝑇 ) · det𝐶V←W

= det(𝐶W←V ·𝐶V←W ) · detMV (𝑇 )
= det 𝐼 · detMV (𝑇 )
= detMV (𝑇 ).

Therefore, for any 𝑇 ∈ L(𝑉 ) and any two bases V andW of 𝑉 , detMV (𝑇 ) = detMW (𝑇 ). □

Proposition 7.8. Let 𝐴 ∈ F𝑛,𝑛 be upper-triangular. Then,

det𝐴 = 𝐴1,1 · · ·𝐴𝑛,𝑛 .

Proof. In the definition, consider each term corresponding to some 𝜎 ∈ 𝑆𝑛 . If 𝜎 ≠ (1, · · · , 𝑛), then we must be going off
the diagonal. But since we have to go through all 𝑛 of them, they go in pairs: going above the diagonal once for some 𝐴𝑖,𝜎𝑖

means you’ll also need to go below the diagonal once, and vice versa. So, at least one of the 𝐴 𝑗,𝜎 𝑗
is 0. Then, only the term

with 𝜎 = (1, · · · , 𝑛) remains, and the proof is complete. □

7.2 The Characteristic Polynomial

The determinant allows us to arrive at the characteristic polynomial, a piece of machinery so potent it would be a waste not
to introduce. The definition is simple for complex vector spaces:

Definition 7.9. Let 𝑉 be a finite-dimensional complex vector space and 𝑇 ∈ L(𝑉 ). The characteristic polynomial of 𝑇 ,
denoted as 𝜒𝑇 ∈ Pdim𝑉 (C), is

𝜒𝑇 (𝑧) B det(𝑧 · 𝐼 −𝑇 ),

which is a degree-dim𝑉 , monic (i.e., leading coefficient equals 1) polynomial.

Proposition 7.10. Let 𝑉 be a finite-dimensional complex vector space and 𝑇 ∈ L(𝑉 ). Then, 𝜆 is an eigenvalue of 𝑇 if and
only if 𝜆 is a zero of 𝜒𝑇 .
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Proof. Observe that 𝜒𝑇 (𝜆) = det(𝜆 · 𝐼 −𝑇 ) = 0 if and only if 𝜆 · 𝐼 −𝑇 is not invertible by Corollary 7.4. By Corollary 4.20, this
is equivalent to 𝜆 · 𝐼 −𝑇 , and thus𝑇 − 𝜆 · 𝐼 , being not injective. This is further equivalent to 𝜆 ∈ 𝐸 (𝑇 ) by Proposition 6.3. □

When we investigated polynomials earlier, we had Corollary 5.3 which provides the decomposition

𝜒𝑇 (𝑧) = (𝑧 − 𝜆1)𝑑1 · · · (𝑧 − 𝜆𝑚)𝑑𝑚

for some 𝜆1, · · · , 𝜆𝑚 ∈ C and 𝑑1, · · · , 𝑑𝑚 ∈ N+ such that 𝑑1 + · · · + 𝑑𝑚 = 𝑛 (note that 𝑐 = 1 here). These 𝜆1, · · · , 𝜆𝑚 are
precisely the eigenvalues of 𝑇 , and 𝑑1, · · · , 𝑑𝑚 are said to be their (algebraic) multiplicities respectively.

The coefficients of 𝜒𝑇 also contains a lot of useful information, of which the most notable is the following:

Proposition 7.11. Let𝑉 be a finite-dimensional complex vector space and𝑇 ∈ L(𝑉 ). Suppose 𝜒𝑇 (𝑧) = 𝑎0+ · · ·+𝑎𝑛−1𝑧𝑛−1+
𝑧𝑛 . Then, 𝑎0 = (−1)dim𝑉 · det𝑇 .

To prove this, we cleverly use the equivalence of the many forms of 𝜒𝑇 .

Proof. Note that 𝑎0 = 𝜒𝑇 (0) = det(0 · 𝐼 −𝑇 ) = det((−1) ·𝑇 ) = (−1)dim𝑉 ·𝑇 . □

And if we look at the polynomial decomposition, we see that the constant terms comes from exactly one term in the
decomposition: taking −𝜆𝑖 for each factor, where we still get that sign (−1)dim𝑉 . Therefore,

Corollary 7.12. Let 𝑉 be a finite-dimensional complex vector space and 𝑇 ∈ L(𝑉 ). Then, the determinant of 𝑇 is the
product of all eigenvalues of 𝑇 , counted with their respective algebraic multiplicities.

7.3 The Trace

The definition of the trace of a matrix is straightforward: we just add up the diagonal entries.

Definition 7.13. Let 𝐴 ∈ F𝑛,𝑛 . The trace of 𝐴, denoted as tr𝐴, is defined as the sum of the diagonal entries of 𝐴; that is,

tr𝐴 B 𝐴1,1 + · · · +𝐴𝑛,𝑛 .

Even though there is not an immediate intuitive picture that we can attach to the trace, it still has many nice properties
surprisingly. As is the case for determinants also, the trace turns out to underlie some very profound structure that is beyond
the scope of these notes.

One important property is that tr(𝐴𝐵) = tr(𝐵𝐴)—even though 𝐴𝐵 ≠ 𝐵𝐴 in general.

Proposition 7.14. Let 𝐴, 𝐵 ∈ F𝑛,𝑛 . Then, tr(𝐴𝐵) = tr(𝐵𝐴).

We will again omit the proof: it’s a useful exercise to show this from the definition, but too brute-force that it hides the
amazingly coherent algebraic structure behind the trace, namely, the tensor product.

For this reason, we can similarly define the trace of an operator independent of the basis chosen.

Definition 7.15. Let 𝑉 be a finite-dimensional vector space and 𝑇 ∈ L(𝑉 ). The trace of 𝑇 , denoted as tr𝑇 , is defined as
trM(𝑇 ) under any basis.

To show consistency, we simply apply the Proposition above.

Proof. Let V,W be bases of 𝑉 . Then,

trMW (𝑇 ) = tr(𝐶W←V ·MV (𝑇 ) ·𝐶V←W )
= tr((𝐶V←W ·𝐶W←V ) ·MV (𝑇 ))
= tr(MV (𝑇 )) .
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The proof is complete. □

In the complex case, we can obtain an upper-triangular matrix of 𝑇 under some basis, where the diagonal elements are
precisely the eigenvalues (Corollary 6.15). Thus,

Proposition 7.16. Let 𝑉 be a finite-dimensional complex vector space and 𝑇 ∈ L(𝑉 ). Then, tr𝑇 equals the sum of all
eigenvales of 𝑇 , counted with their respective algebraic multiplicities.

Proof. Fix a basis under which M(𝑇 ) is upper-triangular by Corollary 6.15; let 𝜆1 = M(𝑇 )1,1, · · · , 𝜆𝑛 = M(𝑇 )𝑛,𝑛 , where
𝑛 B dim𝑉 . Note that they are exactly all eigenvalue of 𝑇 counted with their algebraic multiplicities, and tr𝑇 = trM(𝑇 ) =
𝜆1 + · · · + 𝜆𝑛 . □

7.4 The Complexification of a Real Vector Space

So we have obtained many useful results about finite-dimensional complex vector spaces, but they won’t hold at all for the
real case (like the upper-triangularization). Is there a way to bridge this gap?

It turns out that we can nicely “complexify” any real vector space by observing how to get from R to C: by taking 𝑎 +𝑏𝑖 for
𝑎, 𝑏 ∈ R.

Definition 7.17. Let 𝑉 be a real vector space. The complexification of 𝑉 , denoted as 𝑉C, is the complex vector space
associated with 𝑉 defined as

𝑉C B {𝑢 + 𝑖𝑣 | 𝑢, 𝑣 ∈ 𝑉 },

where𝑢 +𝑖𝑣 is a formal symbol defined by the pair (𝑢, 𝑣) ∈ 𝑉 ×𝑉 . As a vector space, the addition is defined component-wise
from the product, and the scalar multiplication is defined as

(𝑎 + 𝑏𝑖) · (𝑢 + 𝑖𝑣) B (𝑎 · 𝑢 − 𝑏 · 𝑣) + 𝑖 (𝑎 · 𝑣 + 𝑏 · 𝑢)

for arbitrary 𝑎 + 𝑏𝑖 ∈ C and 𝑢 + 𝑖𝑣 ∈ 𝑉C.

The best part about the complexification is that any old basis of𝑉 is also a basis of𝑉C! Even though we have twice as many
“degrees of freedom,” informally speaking, the complex scalars are sufficient to span the entire new space.

Proposition 7.18. Suppose 𝑉 is a finite-dimensional real vector space and 𝑣1, · · · , 𝑣𝑛 is a basis of 𝑉 . Then, 𝑣1, · · · , 𝑣𝑛 is a
basis of 𝑉C.

P.S.: It’s worth mentioning that any real vector 𝑣 ∈ 𝑉 is to be interpreted as complex vector 𝑣 ∈ 𝑉C through “𝑣 = 𝑣 +
𝑖0𝑉 .”

Proof. Clearly, 𝑣1, · · · , 𝑣𝑛 remains linearly independent, because 0R = 0C. It remains to show that the list is spanning.

Suppose 𝑢 + 𝑖𝑣 ∈ 𝑉C is arbitrary with 𝑢, 𝑣 ∈ 𝑉 . Then, fix constants 𝑎1, · · · , 𝑎𝑛 and 𝑏1, · · · , 𝑏𝑛 such that 𝑢 = 𝑎1 · 𝑣1 + · · · +𝑎𝑛 · 𝑣𝑛
and 𝑣 = 𝑏1 · 𝑣1 + · · · + 𝑏𝑛 · 𝑣𝑛 . Then,

𝑢 + 𝑖𝑣 = (𝑎1 · 𝑣1 + · · · + 𝑎𝑛 · 𝑣𝑛) + 𝑖 (𝑏1 · 𝑣1 + · · · + 𝑏𝑛 · 𝑣𝑛) = (𝑎1 + 𝑏1𝑖) · 𝑣1 + · · · + (𝑎𝑛 + 𝑏𝑛𝑖) · 𝑣𝑛 .

Therefore, 𝑣1, · · · , 𝑣𝑛 is a linearly independent list in 𝑉C that spans 𝑉C, so it is a basis of 𝑉C. □

As a corollary, for a finite-dimensional real vector space, its complexification have the same dimension as the real vector
space. But they’re not isomorphic! The concept of vector space isomorphisms only makes sense for vector spaces over the
same field.

Corollary 7.19. Let 𝑉 be a finite-dimensional real vector space. Then,

dim𝑉C = dim𝑉 .
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So far, we still don’t have what we need to transfer the complex stuff over to the real case. We need to also translate from
operators on 𝑉 to operators on 𝑉C.

Definition 7.20. Let 𝑉 be a real vector space and 𝑇 ∈ L(𝑉 ). The complexification of 𝑇 , denoted as 𝑇C ∈ L(𝑉C), is defined
as

𝑇C (𝑢 + 𝑖𝑣) B 𝑇 (𝑢) + 𝑖𝑇 (𝑣).

This definition is so natural that the matrix of a complexified operator equals the old matrix under the same basis, for an
operator on a finite-dimensional real vector space.

Proposition 7.21. Let 𝑉 be a finite-dimensional real vector space and 𝑇 ∈ L(𝑉 ). Under any basis,

M(𝑇 ) = M(𝑇C).

Proof. Fix a basis 𝑣1, · · · , 𝑣𝑛 of 𝑉 and 𝑉C. Note that 𝑇 (𝑣𝑖 ) = 𝑇C (𝑣𝑖 ) by definition, so M(𝑇 ) = M(𝑇C). □

Because we defined the characteristic polynomial through matrices, the polynomials also agree:

Corollary 7.22. Let 𝑉 be a finite-dimensional real vector space and 𝑇 ∈ L(𝑉 ). Then, 𝜒𝑇 = 𝜒𝑇C .

Proof. Fix a basis 𝑣1, · · · , 𝑣𝑛 of𝑉 . By definition, for a real 𝑧 ∈ R, 𝜒𝑇 (𝑧) = |𝑧 · 𝐼𝑛 −M(𝑇 ) | = |𝑧 · 𝐼𝑛 −M(𝑇C | = 𝜒𝑇C |R (𝑧). That
is, 𝜒𝑇C |R − 𝜒𝑇 is the constant zero polynomial, so the coefficients of 𝜒𝑇C equal those of 𝜒𝑇 . □

As a result, the results for complex operators also hold for real operators!

Corollary 7.23. Let 𝑉 be a finite-dimensional real vector space and 𝑇 ∈ L(𝑉 ). Then,{
det𝑇 = 𝜆1 · · · 𝜆𝑛,
tr𝑇 = 𝜆1 + · · · + 𝜆𝑛,

where 𝜆1, · · · , 𝜆𝑛 are the zeros of 𝜒𝑇C counted with algebraic multiplicities.

8 Inner Product Spaces

The concept of a vector space is already so general and powerful, but we still can’t do everything we normally can in R𝑛 .
Specifically, because there is no concept of lengths or angles, we can’t manipulate the geometry of a general vector space
as we would in R𝑛 .

So what is the best tool to capture this concept? We could go with the length (a normed space), but a more general tool is
the dot product in R𝑛 :

(𝑥1, · · · , 𝑥𝑛) · (𝑦1, · · · , 𝑦𝑛) = 𝑥1𝑦1 + · · · + 𝑥𝑛𝑦𝑛 .

Why is this such a big deal? Well, this is how we defined things like length (by taking the dot product of a vector with itself)
and angles (do you remember that 𝑥 ·𝑦 = |𝑥 | · |𝑦 | · cos𝜃 with 𝜃 being the angle between 𝑥 and 𝑦?). And this concept can be
readily formalized more generally.

Definition 8.1. An inner product space is a vector space 𝑉 over F ∈ {R,C} equipped with an operator ⟨·, ·⟩ : 𝑉 ×𝑉 → F
such that for any 𝑢1, 𝑢2, 𝑢, 𝑣 ∈ 𝑉 and 𝑐 ∈ F,

• ⟨𝑣, 𝑣⟩ ∈ [0, +∞);

• ⟨𝑣, 𝑣⟩ = 0⇒ 𝑣 = 0;

• ⟨𝑐 · 𝑢1 + 𝑢2, 𝑣⟩ = 𝑐 · ⟨𝑢1, 𝑣⟩ + ⟨𝑢2, 𝑣⟩;
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• ⟨𝑢, 𝑣⟩ = ⟨𝑣,𝑢⟩,

where the bar denoted complex conjugation (which is the identity map on R).

Obviously, the dot product in R𝑛 makes the vector space R𝑛 also an inner product space by this definition. But what the
heck is the bar?

Well, we definitely need it if we want this concept to work in the complex case. The complex dot product is

(𝑤1, · · · ,𝑤𝑛) · (𝑧1, · · · , 𝑧𝑛) = 𝑤1𝑧1 + · · · +𝑤𝑛𝑧𝑛 .

This clearly fits the definition. But what if we used the old definition? It turns out the first property can’t hold. Note that
⟨𝑣, 𝑣⟩ won’t necessarily be a real number (much less non-negative)! Can you come up with an example?

What’s more, the second property also fails. For example, in C2, if we use the real vector space inner product, the vector
(1 + 𝑖, 1 − 𝑖) has

“⟨(1 + 𝑖, 1 − 𝑖), (1 + 𝑖, 1 − 𝑖)⟩” = (1 + 𝑖)2 + (1 − 𝑖)2 = 1 + 2𝑖 − 1 + 1 − 2𝑖 − 1 = 0,

but (1 + 𝑖, 1 − 𝑖) ≠ 0.

A sad consequence of this definition, though, is that the inner product is not linear in the second component for complex
vector spaces (though this is the case in real vector spaces). While we still have ⟨𝑢, 𝑣1 + 𝑣2⟩ = ⟨𝑢, 𝑣1⟩ + ⟨𝑢, 𝑣2⟩

I hope this can convince you that this definition is the way to go. Indeed, we get so many results from geometry, of which the
most famous is the Pythagorean theorem. To establish this, we first need the notion of perpendicularity and length.

Definition 8.2. Let 𝑉 be an inner product space and 𝑢, 𝑣 ∈ 𝑉 . Then, 𝑢 is said to be perpendicular to 𝑣 , denoted as 𝑢 ⊥ 𝑣 , if
⟨𝑢, 𝑣⟩ = 0.

While this is symmetric (that is, 𝑢 ⊥ 𝑣 iff 𝑣 ⊥ 𝑢), it is by no means an equivalence relation! Reflexivity clearly fails (for any
nonzero vector), and so does transitivity. Consider R3 where 𝑢 = (1, 0, 0), 𝑣 = (1, 1, 0), and 𝑧 = (0, 0, 1). Even though 𝑢 ⊥ 𝑧

and 𝑣 ⊥ 𝑧, we don’t have 𝑢 ⊥ 𝑣 .

Definition 8.3. Let 𝑉 be an inner product space. The norm of 𝑉 , denoted as ∥·∥ : 𝑉 → [0, +∞), is defined as

∥𝑣 ∥ B
√︁
⟨𝑣, 𝑣⟩

for any 𝑣 ∈ 𝑉 .

By the way, I’ll also slip in some properties of the norm: for any 𝑐 ∈ F and 𝑣, 𝑣1, 𝑣2 ∈ 𝑉 ,

• (Positive definiteness) ∥𝑣 ∥ ≥ 0 and the equality holds if and only if 𝑣 = 0;

• (Absolute homogeneity) ∥𝑐 · 𝑣 ∥ = |𝑐 | · ∥𝑣 ∥;

• (Triangle inequality) ∥𝑣1 + 𝑣2∥ ≥ ∥𝑣1∥ + ∥𝑣2∥.

Note that the absolute value is not as trivial as you might think! This is pretty crucial especially for the complex case. The
first two are obvious while proving the third is harder than it seems. We’ll specifically prove the triangle inequality in just
a moment.

For now, let’s marvel at the Pythagorean theorem.

Theorem 8.4 (Pythagoras). Let 𝑉 be an inner product space and 𝑢, 𝑣 ∈ 𝑉 . If 𝑢 ⊥ 𝑣 , then ∥𝑢 + 𝑣 ∥2 = ∥𝑢∥2 + ∥𝑣 ∥2.

Proof. Observe that

∥𝑢 + 𝑣 ∥2 = ⟨𝑢 + 𝑣,𝑢 + 𝑣⟩
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= ⟨𝑢,𝑢⟩ +���⟨𝑢, 𝑣⟩ +���⟨𝑣,𝑢⟩ + ⟨𝑣, 𝑣⟩
= ⟨𝑢,𝑢⟩ + ⟨𝑣, 𝑣⟩
= ∥𝑢∥2 + ∥𝑣 ∥2 .

The proof is complete. □

That was smooth. Now, we’ll try to build towards the triangle inequality as promised, but we need some machinery.

In MATH 230, we talked about projections: for two vectors 𝑢, 𝑣 ∈ 𝑉 with 𝑣 ≠ 0, we can write 𝑢 as a sum of two vectors, one
parallel to 𝑣 and the other perpendicular to 𝑣 . This also works for a general inner product space.

Theorem 8.5 (Orthogonal Decomposition). Suppose 𝑉 is an inner product space and 𝑢, 𝑣 ∈ 𝑉 with 𝑣 ≠ 0. Then, there exists
𝑐 ∈ F and𝑤 ∈ 𝑉 with𝑤 ⊥ 𝑣 such that

𝑢 = 𝑐 · 𝑣 +𝑤.

In particular, this holds for 𝑐 = ⟨𝑢, 𝑣⟩ /⟨𝑣, 𝑣⟩ and𝑤 = 𝑢 − 𝑐 · 𝑣 .

The proof is straightforward, just verifying the desired properties hold.

Proof. Note that with 𝑐 = ⟨𝑢, 𝑣⟩ /⟨𝑣, 𝑣⟩ and𝑤 = 𝑢 − 𝑐 · 𝑣 , we have

𝑐 · 𝑣 +𝑤 = 𝑐 · 𝑣 + 𝑢 − 𝑐 · 𝑣 = 𝑢

and
⟨𝑤, 𝑣⟩ = ⟨𝑢 − 𝑐 · 𝑣, 𝑣⟩ = ⟨𝑢, 𝑣⟩ − 𝑐 · ⟨𝑣, 𝑣⟩ = ⟨𝑢, 𝑣⟩ − ⟨𝑢, 𝑣⟩⟨𝑣, 𝑣⟩ · ⟨𝑣, 𝑣⟩ = 0.

The proof is finished. □

The next big-name result is the Cauchy-Schwartz inequality. Those involved in math competition can truly appreciate how
powerful this innocent formula looks.

Proposition 8.6 (Cauchy-Schwartz). Let 𝑉 be an inner product space and 𝑢, 𝑣 ∈ 𝑉 . Then,

|⟨𝑢, 𝑣⟩| ≤ ∥𝑢∥ · ∥𝑣 ∥ ,

where the equality holds if and only if 𝑢, 𝑣 is linearly dependent.

Proof. We first prove the inequality. If 𝑣 = 0, both sides equal 0, so the inequality holds trivially. Now suppose 𝑣 ≠ 0.

Let F be the field associated with 𝑉 . By orthogonal decomposition (Theorem 8.5, fix 𝑐 ∈ F and𝑤 ∈ 𝑉 with𝑤 ⊥ 𝑣 such that
𝑢 = 𝑐 · 𝑣 +𝑤 . Then,

∥𝑢∥2 = ∥𝑐 · 𝑣 ∥2 + ∥𝑤 ∥2 (Theorem 8.4)
= |𝑐 |2 · ∥𝑣 ∥2 + ∥𝑤 ∥2

≥
���� ⟨𝑢, 𝑣⟩⟨𝑣, 𝑣⟩

����2 · ∥𝑣 ∥2 (∥𝑤 ∥2 ≥ 0)

=
|⟨𝑢, 𝑣⟩|2

⟨𝑣, 𝑣⟩ .

Therefore, ∥𝑢∥2 · ∥𝑣 ∥2 ≥ |⟨𝑢, 𝑣⟩|2. Note that the equality holds iff 𝑣 = 0 or, when 𝑣 ≠ 0, 𝑤 = 0 (i.e., 𝑢 = 𝑐 · 𝑣); that is, the
equality holds if and only if 𝑢, 𝑣 is linearly independent. □

It took us a while, but it was worth it. We’re now ready to prove the triangle inequality.
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Proposition 8.7 (Triangle Inequality). Suppose 𝑉 is a finite-dimensional vector space and 𝑢, 𝑣 ∈ 𝑉 . Then, ∥𝑢 + 𝑣 ∥ ≤
∥𝑢∥ + ∥𝑣 ∥.

Proof. Observe that

∥𝑢 + 𝑣 ∥2 = ⟨𝑢 + 𝑣,𝑢 + 𝑣⟩
= ⟨𝑢,𝑢⟩ + ⟨𝑢, 𝑣⟩ + ⟨𝑢, 𝑣⟩ + ⟨𝑣, 𝑣⟩
= ⟨𝑢,𝑢⟩ + 2 Re ⟨𝑢, 𝑣⟩ + ⟨𝑣, 𝑣⟩
≤ ∥𝑢∥2 + 2 |⟨𝑢, 𝑣⟩| + ∥𝑣 ∥2

≤ ∥𝑢∥2 + 2 ∥𝑢∥ · ∥𝑣 ∥ + ∥𝑣 ∥2

= (∥𝑢∥ + ∥𝑣 ∥)2 .

Therefore, ∥𝑢∥ + 𝑣 ≤ ∥𝑢∥ + ∥𝑣 ∥. □

A final note for the sake of completeness: the relationship between norms and inner products. As we have shown, every
inner product ⟨·, ·⟩ induces a norm ∥·∥ : 𝑥 ↦→

√︁
⟨𝑥, 𝑥⟩. Can we get an inner product from a norm?

The answer is a qualified “yes.” We first state two results that helps us evaluate an inner product from norms, without
proof.

Proposition 8.8. Let 𝑉 be a real inner product space. Then, for any 𝑢, 𝑣 ∈ 𝑉 ,

⟨𝑢, 𝑣⟩ = 1
4

(
∥𝑢 + 𝑣 ∥2 − ∥𝑢 − 𝑣 ∥2

)
.

Proposition 8.9. Let 𝑉 be a complex inner product space. Then, for any 𝑢, 𝑣 ∈ 𝑉 ,

⟨𝑢, 𝑣⟩ = 1
4

(
∥𝑢 + 𝑣 ∥2 − ∥𝑢 − 𝑣 ∥2 + 𝑖 · ∥𝑢 + 𝑖𝑣 ∥2 − 𝑖 · ∥𝑢 − 𝑖𝑣 ∥2

)
.

This gives us a promising direction: for every normed space (𝑉 , ∥·∥), we should be able to define an inner product in this
way. The question is: is the resultant “inner product” really an inner product?

No! The norm may not satisfy the parallelogram equality: consider the ℓ1 norm ∥·∥1 on R𝑛 defined by

∥(𝑥1, · · · , 𝑥𝑛)∥1 B |𝑥1 | + · · · + |𝑥𝑛 |

is indeed a norm, but the parallelogram equality does not hold (check this!). If we do try and define an “inner product” in
this fashion, the parallelogram equality clearly fails for the inner product space, a contradiction. But otherwise, we do have
an inner product induced by a norm!

8.1 Orthonomal Bases

Prototypical Example. (1/
√
2, 1/
√
2), (−1/

√
2, 1/
√
2) is an orthonormal basis of R2.

In a general finite-dimensional vector space 𝑉 , any length-𝑛 linearly independent list of vectors is a basis, and there is no
reasonable preference for one basis over another. But the geometry that the inner product introduces allows us to talk
about perpendicularity, as we have seen, and it would be natural to ask for a basis like the standard basis on R𝑛 : a pairwise
perpendicular one where each basis vector has length 1.

Why is this interesting? Well, a lot of results ensue from this perpendicularity, which adds so much richer structure to
this space, and allows us to start quantifying the geometry of this space. A particularly appealing aspect of such a basis
is that we can directly calculate the coordinate of a vector, which isn’t possible in a vector space! Consider a vector 𝑣 =

(𝑥1, · · · , 𝑥𝑛) ∈ R𝑛 . In order to get the first coordinate 𝑥1, we can simply do

𝑥𝑖 = ⟨𝑣, 𝑒1⟩ .
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Before I get too excited, let’s start with the definition.

Definition 8.10. Suppose 𝑉 is an inner product space. A list of vectors 𝑒1, · · · , 𝑒𝑘 ∈ 𝑉 is said to be orthonormal if〈
𝑒𝑖 , 𝑒 𝑗

〉
= 𝛿𝑖, 𝑗 .

If 𝑉 is finite-dimensional and 𝑒1, · · · , 𝑒𝑛 is a basis, then 𝑒1, · · · , 𝑒𝑛 is also called an orthonormal basis.

Just as a reminder, the 𝛿𝑖, 𝑗 notation is called the Kronecker delta. It is 1 when 𝑖 = 𝑗 and 0 otherwise, straightforward enough.
This is just a concise notation that captures both the length-1 property and the pairwise orthogonal property.

Now, let’s establish some results we mentioned so far, like coordinates and stuff. We’ll also refrain from adding the finite-
dimensional condition, whenever possible, to make the discussion more general. After all, many useful spaces are infinite-
dimensional (an important example is 𝐶𝑘 (R) for 𝑘 ∈ Z≥0, the space of 𝑘-times continuously differentiable functions from
R).

Theorem 8.11. Suppose 𝑉 is an inner product space over F ∈ {R,C} and 𝑒1, · · · , 𝑒𝑘 ∈ 𝑉 is an orthonormal list. Then,

• ∥𝑐1 · 𝑒1 + · · · + 𝑐𝑘 · 𝑒𝑘 ∥2 = |𝑐1 |2 + · · · + |𝑐𝑘 |2 for all 𝑐1, · · · , 𝑐𝑘 ∈ F;

• 𝑒1, · · · , 𝑒𝑘 is linearly independent;

• 𝑣 = ⟨𝑣, 𝑒1⟩ · 𝑒1 + · · · + ⟨𝑣, 𝑒𝑘⟩ · 𝑒𝑘 for all 𝑣 ∈ span(𝑒1, · · · , 𝑒𝑘 ).

Proof. The first item follows from repeated applications of the Pythagorean theorem. Note that if 𝑣 ∈ 𝑉 is perpendicular to
any of 𝑒1, · · · , 𝑒𝑘 , then 𝑣 is perpendicular to any linear combination (𝑐1 · 𝑒1 + · · · + 𝑐𝑘 · 𝑒𝑘 ) for all 𝑐1, · · · , 𝑐𝑘 ∈ F. Thus,

∥𝑐1 · 𝑒1 + · · · + 𝑐𝑘 · 𝑒𝑘 ∥2 = ∥𝑐1 · 𝑒1∥2 + ∥𝑐2 · 𝑒2 + · · · + 𝑐𝑘 · 𝑒𝑘 ∥2

= |𝑐1 |2 + ∥𝑐2 · 𝑒2 + · · · + 𝑐𝑘 · 𝑒𝑘 ∥2

=
...

= |𝑐1 |2 + · · · + |𝑐𝑘 |2 .

For item 2, suppose 𝑐1, · · · , 𝑐𝑘 ∈ F are such that 𝑐1 · 𝑒1 + · · · + 𝑐𝑘 · 𝑒𝑘 = 0. Then, by item 1, |𝑐1 |2 + · · · + |𝑐𝑘 |2 = 0, which implies
𝑐1 = · · · = 𝑐𝑘 = 0; that is, 𝑒1, · · · , 𝑒𝑘 is linearly independent.

Lastly, suppose 𝑣 = 𝑐1 · 𝑒1 + · · · + 𝑒𝑘 · 𝑒𝑘 . Then, for any 𝑖 ∈ {1, · · · , 𝑘}, ⟨𝑣, 𝑒𝑖⟩ = 𝑐1 · ⟨𝑒1, 𝑒𝑖⟩ + · · · + 𝑐𝑘 · ⟨𝑒𝑘 , 𝑒𝑖⟩ = 𝑐𝑖 indeed. □

Let’s now take a look at the famed Gram-Schmidt process, an algorithm that “orthonormalizes” all linearly independent
lists. Say we have 𝑣1 = (1, 1) and 𝑣2 = (0, 1) in R2. Clearly, they can span the entire plane. The process will first divide 𝑣1 by
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its length to get us a unit vector:
𝑒1 B 𝑣1/∥𝑣1∥ = (1/

√
2, 1/
√
2).

Now, 𝑣2 isn’t perpendicular to 𝑒1, but we can decompose it as 𝑣2 = 𝑢 +𝑤 , where 𝑢 is parallel to 𝑒1 and𝑤 perpendicular to 𝑒1
(Theorem 8.5). Then, taking just the𝑤 part works, so we do

𝑒2 B 𝑤/∥𝑤 ∥ = (−1/
√
2, 1/
√
2).

We’ll present this result in terms of a theorem that justifies some of its useful theoretical properties.

Theorem 8.12 (Gram-Schmidt). Let𝑉 be an inner product space and suppose 𝑣1, · · · , 𝑣𝑛 ∈ 𝑉 form a linearly independent list.
Let

𝑢1 = 𝑣1, 𝑒1 = 𝑢1/∥𝑢1∥ ,

𝑢2 = 𝑣2 − ⟨𝑣2, 𝑒1⟩ · 𝑒1, 𝑒2 = 𝑢2/∥𝑢2∥ ,

𝑢3 = 𝑣3 − ⟨𝑣3, 𝑒1⟩ · 𝑒1 − ⟨𝑣3, 𝑒2⟩ · 𝑒2, 𝑒3 = 𝑢3/∥𝑢3∥ ,
...

...

𝑢𝑛 = 𝑣𝑛 − ⟨𝑣𝑛, 𝑒1⟩ · 𝑒1 − · · · − ⟨𝑣3, 𝑒𝑛⟩ · 𝑒𝑛, 𝑒𝑛 = 𝑢𝑛/∥𝑢𝑛 ∥ .

Then, 𝑒1, · · · , 𝑒𝑛 is an orthonormal list and span(𝑒1, · · · , 𝑒𝑖 ) = span(𝑣1, · · · , 𝑣𝑖 ) for all 𝑖 ∈ {1, · · · , 𝑛}.

Proof. We perform induction on 𝑖 .

Base case. Note that 𝑒1 = 𝑢1/∥𝑢1∥ has norm ∥𝑒1∥ = ∥𝑢1/∥𝑢1∥∥ = |∥𝑢1∥| /∥𝑢1∥ = 1. This is valid because 𝑣1 ≠ 0 (because of
linear independence). Then, 𝑒1 is an orthonormal list and span(𝑒1) = span(𝑣1).

Inductive case. Suppose now that 𝑒1, · · · , 𝑒𝑖−1 is an orthonormal list with span(𝑒1, · · · , 𝑒𝑖−1) = span(𝑣1, · · · , 𝑣𝑖−1) for
some 𝑖 ∈ {2, · · · , 𝑛}. Similarly, linear independence implies 𝑣𝑖 ∉ span(𝑣1, · · · , 𝑣𝑖−1) = span(𝑒1, · · · , 𝑒𝑖−1), so 𝑢𝑖 ≠ 0 by
Theorem 8.11. Then 𝑒𝑖 also has length 1.

It remains to verify perpendicularity. Indeed, for any 𝑗 ∈ {1, · · · , 𝑖 − 1},〈
𝑒𝑖 , 𝑒 𝑗

〉
=

1
∥𝑢𝑖 ∥

·
〈
𝑣𝑖 − ⟨𝑣𝑖 , 𝑒1⟩ · 𝑒1 − · · · − ⟨𝑣𝑖 , 𝑒𝑖−1⟩ · 𝑒𝑖−1, 𝑒 𝑗

〉
=

1
∥𝑢𝑖 ∥

·
(〈
𝑣𝑖 , 𝑒 𝑗

〉
−(((((((⟨𝑣𝑖 , 𝑒1⟩ ·

〈
𝑒1, 𝑒 𝑗

〉
− · · · −

〈
𝑣𝑖 , 𝑒 𝑗

〉
·
〈
𝑒 𝑗 , 𝑒 𝑗

〉
− · · · −(((((((((

⟨𝑣𝑖 , 𝑒𝑖−1⟩ ·
〈
𝑒𝑖−1, 𝑒 𝑗

〉)
= 0.

The proof is complete. □

Not only is the Gram-Schmidt process useful in a wide variety of applications, this result also has very useful corollaries
theoretically.

Corollary 8.13. Let 𝑉 be a finite-dimensional inner product space. Then,

• 𝑉 has an orthonormal basis;

• Any orthonormal list of vectors in 𝑉 can be extended to an orthonormal basis of 𝑉 ;

The proof are trivial, but the implication is not: the finite-dimensionality of an inner product space now implies the existence
of not only an arbitrary basis, but an orthonormal one. Another even more useful result is presented as follows; it is so
special that it deserves its own name:

Theorem 8.14 (Schur). Let 𝑉 be a non-zero, finite-dimensional complex inner product space. Then, any linear operator 𝑇 ∈
L(𝑉 ) has an upper-triangular matrix under some orthonormal basis of 𝑉 .
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Proof. Because 𝑉 is a non-zero, finite-dimensional complex vector space, MV (𝑇 ) is upper-triangular under some basis
V B 𝑣1, · · · , 𝑣𝑛 of𝑉 byTheorem 6.13. Then, Proposition 6.12 implies that span(𝑣1, · · · , 𝑣𝑖 ) is𝑇 -invariant for all 𝑖 ∈ {1, · · · , 𝑛}.
Then, after applying the Gram-Schmidt process to 𝑣1, · · · , 𝑣𝑛 , we have an orthonormal basis E B 𝑒1, · · · , 𝑒𝑛 of 𝑉 . Now, for
all 𝑖 ∈ {1, · · · , 𝑛}, span(𝑒1, · · · , 𝑒𝑖 ) = span(𝑣1, · · · , 𝑣𝑖 ) is 𝑇 -invariant, so ME (𝑇 ) is upper-triangular. □

Now let’s turn to the topic of linear functionals, or the dual space. We are concerned with this question in the setting of a
finite-dimensional inner product space. We’ve talked about how a linear functional 𝜙 ∈ 𝑉 ∗ = L(𝑉 , F) acts like a row vector
for 𝑉 = F𝑛 , in the sense that it is linear and has codomain F. But there’s a crucial missing piece: can we actually write any
linear functional 𝜙 as a row vector, which is the transpose of some column vector 𝑢 ∈ 𝑉 ? That is, we want to see if there’s a
𝑢 ∈ 𝑉 so that 𝜙 (𝑣) = “𝑢⊤𝑣” = ⟨𝑣,𝑢⟩ for all 𝑣 . The Riesz representation theorem assures us that this is the case. What’s more,
it also gives a way to explicitly calculate this 𝑢.

Theorem 8.15 (Riesz representation). Let 𝑉 be a finite-dimensional inner product space. Then, for any linear functional
𝜙 ∈ 𝑉 ∗, there exists a unique vector 𝑢 ∈ 𝑉 such that

𝜙 (𝑣) = ⟨𝑢, 𝑣⟩ for all 𝑣 ∈ 𝑉 .

Further, for any given orthonormal basis 𝑒1, · · · , 𝑒𝑛 of 𝑉 ,

𝑢 = 𝜙 (𝑒1) · 𝑒1 + · · · + 𝜙 (𝑒𝑛) · 𝑒𝑛 .

One thing to note is that even though 𝑢 is written in different ways under different orthonormal bases, it’s still the same
vector! Now, although we can just plug back 𝑢 to check this holds, we’ll still spell out how we got there.

Proof. To show existence, we suppose 𝑢 ∈ 𝑉 is such that 𝜙 (𝑣) = ⟨𝑢, 𝑣⟩ for all 𝑣 ∈ 𝑉 and argue that an instance of such 𝑢 can
be found explicitly. Let 𝑒1, · · · , 𝑒𝑛 be an orthonormal basis of 𝑉 . Then, for all 𝑖 ∈ {1, · · · , 𝑛},

𝜙 (𝑒𝑖 ) = ⟨𝑒𝑖 , 𝑢⟩ = ⟨𝑢, 𝑒𝑖⟩;

that is, the 𝑖-th coordinate of 𝑢 is ⟨𝑢, 𝑒𝑖⟩ = 𝜙 (𝑒𝑖 ). We now show that 𝑢 = 𝜙 (𝑒1) · 𝑒1 + · · · + 𝜙 (𝑒𝑛) · 𝑒𝑛 works: for any
𝑣 = 𝑐1 · 𝑒1 + · · · + 𝑐𝑛 · 𝑒𝑛 ,

⟨𝑣,𝑢⟩ = 𝑐1 · ⟨𝑒1, 𝑢⟩ + · · · + 𝑐𝑛 · ⟨𝑒𝑛, 𝑢⟩ = 𝑐1 · 𝜙 (𝑒1) + · · · + 𝑐𝑛 · 𝜙 (𝑒𝑛) = 𝜙 (𝑣).

We proceed to show uniqueness. Suppose 𝑢1, 𝑢2 ∈ 𝑉 are such that 𝜙 (𝑣) = ⟨𝑣,𝑢1⟩ = ⟨𝑣,𝑢2⟩ for all 𝑣 ∈ 𝑉 . Then, ⟨𝑣,𝑢1 − 𝑢2⟩=0,
so ⟨𝑢1 − 𝑢2, 𝑒𝑖⟩ = 0 for all 𝑖 ∈ {1, · · · , 𝑛}. So, 𝑢1 − 𝑢2 = 0 · 𝑒1 + · · · + 0 · 𝑒𝑛 = 0, and thus 𝑢1 = 𝑢2. □

8.2 Orthogonal Complements

Prototypical Example. In R3, the orthogonal complement of the 𝑦-axis is the 𝑥𝑧-plane.

In geometry, the definition of orthogonality extends from lines (vectors) to geometric objects (planes). In 3d, for example,
we talk about a line perpendicular to a plane. If two points are symmetric with respect to a line, then the points are on the
same perpendicular plane. We generalize this idea to abstract inner product spaces.

Definition 8.16. Suppose𝑉 is an inner product space and let𝑈 ⊆ 𝑉 . The orthogonal complement of𝑈 , denoted as𝑈 ⊥ ⊆ 𝑉 ,
is defined as the collection of vectors that are perpendicular to all vectors in𝑈 ; that is,

𝑈 ⊥ B {𝑣 ∈ 𝑉 | ∀𝑢 ∈ 𝑉 , 𝑣 ⊥ 𝑢}.

We give some immediate results of this definition.

Proposition 8.17. Suppose 𝑉 is an inner product space and let𝑈 ⊆ 𝑉 . Then,
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• 𝑈 ⊥ is a subspace of 𝑉 ;

• {0}⊥ = 𝑉 ;

• 𝑉⊥ = {0};

• 𝑈 ∩𝑈 ⊥ = {0}.

Proof. Let F be the field associated with 𝑉 . The first item is obvious: if 𝑣1, 𝑣2 ∈ 𝑈 ⊥, then for any 𝑐 ∈ F, ⟨𝑐 · 𝑣1 + 𝑣2, 𝑢⟩ =
𝑐 · ⟨𝑣1, 𝑢⟩ + ⟨𝑣2, 𝑢⟩ = 0.

We move on to the second and third statements. By direct calculation, {0}⊥ = {𝑣 ∈ 𝑉 | ⟨𝑣, 0⟩ = 0} = 𝑉 and 𝑉⊥ = {𝑣 ∈ 𝑉 |
∀𝑢 ∈ 𝑉 , 𝑣 ⊥ 𝑢} = {0}.

Lastly, note that if 𝑢 ∈ 𝑈 ∩𝑈 ⊥, then 𝑢 ⊥ 𝑢; that is, ⟨𝑢,𝑢⟩ = 0, so 𝑢 = 0. Indeed, 0 is in both subspaces. □

While𝑈 can be just a subset, we almost always talk about𝑈 as a subspace. But it doesn’t hurt to have the above definitions
in slightly greater generality.

The third item tells us that the sum of𝑈 and𝑈 ⊥ is a direct sum. Wemight wonder: what is this sum? Well, in the prototypical
example, we know that the 𝑦-axis and the 𝑥𝑧-plane direct-sums to the entire space R3. Is this always true?

Theorem 8.18. Suppose 𝑉 be an inner product space and let𝑈 be a finite-dimensional subspace of 𝑉 . Then,𝑈 ⊕ 𝑈 ⊥ = 𝑉 .

Proof. Fix an orthonormal basis 𝑒1, · · · , 𝑒𝑛 of 𝑈 . For any 𝑣 ∈ 𝑉 , define 𝑢 = ⟨𝑣, 𝑒1⟩ · 𝑒1 + · · · + ⟨𝑣, 𝑒𝑛⟩ · 𝑒𝑛 ∈ 𝑈 . It suffices to
show that 𝑣 −𝑢 ∈ 𝑈 ⊥. Similar to our analysis of the Gram-Schmidt process, for each basis vector 𝑒𝑖 with 𝑖 ∈ {1, · · · , 𝑛}, we
have ⟨𝑣 − 𝑢, 𝑒𝑖⟩ = ⟨𝑣 − ⟨𝑣, 𝑒𝑖⟩ · 𝑒𝑖 , 𝑒𝑖⟩ = 0. Then, (𝑣 −𝑢) is perpendicular to all basis vectors of𝑈 and hence the entirety of𝑈 ,
and thus 𝑣 − 𝑢 ∈ 𝑈 ⊥. □

Corollary 8.19. Suppose 𝑉 is a finite-dimensional inner product space and let𝑈 be a subspace of 𝑉 . Then,

dim𝑉 = dim𝑈 + dim𝑈 ⊥.

Another observation in R3 generalizes (kind of) well to general inner product spaces: the orthogonal complement of the
𝑦-axis is the 𝑥𝑧-plane, and the orthogonal complement of the 𝑥𝑧-plane is back to the 𝑦-axis. Is this true in general? Do we
have (𝑈 ⊥)⊥ = 𝑈 ?

This is indeed the case for a finite-dimensional subspace𝑈 .

Proposition 8.20. Suppose𝑉 is an inner product space and let𝑈 be a finite-dimensional subspace of𝑉 . Then, (𝑈 ⊥)⊥ = 𝑈 .

The approach to this proof is the following: to show the set equality, we show the subset relation in both directions. Unravel
what the definition mean like peeling an onion layer-by-layer, and we’ll get to what we need.

Proof. 𝑈 ⊆ (𝑈 ⊥)⊥. This direction is straightforward. For any 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑈 ⊥, 𝑢 ⊥ 𝑣 by definition; that is, 𝑢 is
perpendicular to the entirety of𝑈 ⊥, and hence 𝑢 ∈ (𝑈 ⊥)⊥.

(𝑈 ⊥)⊥ ⊆ 𝑈 . We need to show that if 𝑣 is perpendicular to the entirety of 𝑈 ⊥, then 𝑣 ∈ 𝑈 . Suppose 𝑣 ⊥ 𝑣 ′ for any 𝑣 ′ ∈ 𝑈 ⊥.
By the direct sum decomposition, we write 𝑣 = 𝑢 + 𝑤 , where 𝑢 ∈ 𝑈 and 𝑤 ∈ 𝑈 ⊥. Now, 𝑣 can also be written uniquely
as a sum of vectors from 𝑈 ⊥ and (𝑈 ⊥)⊥ respectively. The uniqueness implies the first vector must be 𝑤 and the second
𝑢 ∈ 𝑈 ⊆ (𝑈 ⊥)⊥. Then, 𝑤 = 𝑣 − 𝑢, where both 𝑣,𝑢 ∈ (𝑈 ⊥)⊥, so 𝑤 ∈ (𝑈 ⊥)⊥ by linear closure. Because 𝑤 ∈ 𝑈 ⊥ ∩ (𝑈 ⊥)⊥,
𝑤 = 0. Thus, 𝑣 = 𝑢 ∈ 𝑈 as required. □
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This isn’t true for an infinite-dimensional subspace 𝑈 ! These failures are typically found in analysis, but I’ll give a quick
example. Consider the space 𝑙2 ⊂ R∞ of square-summable sequences:

𝑙2 B

{
(𝑥1, 𝑥2, · · · ) ∈ R∞ :

∞∑︁
𝑖=1

𝑥2𝑖 < ∞
}
.

The convergence allows us to define an inner product

⟨(𝑥1, 𝑥2, · · · ), (𝑦1, 𝑦2, · · · )⟩ B
∞∑︁
𝑖=1

𝑥𝑖𝑦𝑖 .

Let’s consider the subspace 𝑈 of sequences with only finitely many non-zero elements. Note that 𝑒1 B (1, 0, 0, · · · ), 𝑒2 B
(0, 1, 0, · · · ), 𝑒3 B (0, 0, 1, · · · , ), · · · is an arbitrarily long independent list in𝑈 , so𝑈 is infinite-dimensional. Now,𝑈 ⊥ = {0}
because any 𝑣 ∈ 𝑈 ⊥ must be perpendicular to all of𝑈 , and in particular the “one-hot” sequences:

𝑣 = (𝑣1, 𝑣2, · · · ) ∈ 𝑈 ⊥ ⇒ ∀𝑖 ∈ N+, ⟨𝑣, 𝑒𝑖⟩ = 𝑣𝑖 = 0⇒ 𝑣 = 0.

Then, {0}⊥ = 𝑉 ; that is, (𝑈 ⊥)⊥ = 𝑉 ≠ 𝑈 .

8.3 Orthogonal Projections

Prototypical Example. Drawing a cube on a piece of paper. This projects each point on the cube to a plane.

We’ve frequently used the concept of

𝑢 B
𝑛∑︁
𝑖=1
⟨𝑣, 𝑒𝑖⟩ · 𝑒𝑖

for an orthonormal basis 𝑒1, · · · , 𝑒𝑛 of some subspace 𝑈 . Note that when dim𝑈 = 1 (or 𝑛 = 1), we recover the orthogonal
decomposition, where 𝑣 = 𝑢 +𝑤 for some 𝑢 ∈ 𝑈 and𝑤 ∈ 𝑈 ⊥. Let’s generalize this further.

Because we have𝑈 ⊕ 𝑈 ⊥ = 𝑉 for dim𝑈 < ∞, we can do this.

Definition 8.21. Suppose 𝑉 is an inner product space and 𝑈 is a finite-dimensional subspace. For each 𝑣 ∈ 𝑉 , we have a
unique decomposition

𝑣 = 𝑢 +𝑤

for 𝑢 ∈ 𝑈 and𝑤 ∈ 𝑈 ⊥. Define the orthogonal projection of 𝑣 onto𝑈 , denoted as 𝑃𝑈 (𝑣), as this unique 𝑢. This defines a map
𝑃𝑈 : 𝑉 → 𝑉 .

This definition now allows us to project onto not just a line, but a plane, hyperplane, etc. In many calculations, we still want
to use the basis. We’ll now formalize this notion.

Proposition 8.22. Suppose𝑉 is an inner product space and𝑈 is a finite-dimensional subspace. If 𝑒1, · · · , 𝑒𝑛 is an orthonor-
mal basis of𝑈 , then

𝑃𝑈 (𝑣) = ⟨𝑣, 𝑒1⟩ · 𝑒1 + · · · + ⟨𝑣, 𝑒𝑛⟩ · 𝑒𝑛

for all 𝑣 ∈ 𝑉 .

For this proof, note that we already have a 𝑢. Because of the uniqueness guaranteed by the direct sum, it only remains to
show that the𝑤 = 𝑣 − 𝑃𝑈 (𝑣) is in𝑈 ⊥.

Proof. Let 𝑢 = ⟨𝑣, 𝑒1⟩ · 𝑒1 + · · · + ⟨𝑣, 𝑒𝑛⟩ · 𝑒𝑛 and 𝑤 = 𝑣 − 𝑢. It suffices to show 𝑤 ∈ 𝑈 ⊥; that is, 𝑤 ⊥ 𝑒𝑖 for all 𝑖 ∈ {1, · · · , 𝑛}.
Observe that

⟨𝑤, 𝑒𝑖⟩ = ⟨𝑣, 𝑒𝑖⟩ −
𝑛∑︁
𝑗=1

〈
𝑣, 𝑒 𝑗

〉
·
〈
𝑒 𝑗 , 𝑒𝑖

〉
= ⟨𝑣, 𝑒𝑖⟩ −

𝑛∑︁
𝑗=1

〈
𝑣, 𝑒 𝑗

〉
· 𝛿𝑖, 𝑗 = ⟨𝑣, 𝑒𝑖⟩ − ⟨𝑣, 𝑒𝑖⟩ = 0.

Then, the linearity of the inner product implies that𝑤 is perpendicular to all of𝑈 , and hence𝑤 ∈ 𝑈 ⊥. □
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Here are some immediate properties of the orthogonal projection:

Proposition 8.23. Suppose 𝑉 is an inner product space and𝑈 is a finite-dimensional subspace. Then,

• 𝑃𝑈 ∈ L(𝑉 ) (that is, 𝑃𝑈 is linear);

• null 𝑃𝑈 = 𝑈 ⊥;

• range 𝑃𝑈 = 𝑈 ;

• 𝑃𝑈 |𝑈 = 𝐼 ;

• 𝑃2
𝑈
= 𝑃𝑈 ;

• 𝑃𝑈 + 𝑃𝑈 ⊥ = 𝐼 ;

• ∥𝑃𝑈 (𝑣)∥ ≤ ∥𝑣 ∥ for all 𝑣 ∈ 𝑉 .

Proof. Fix an orthonormal basis 𝑒1, · · · , 𝑒𝑛 of𝑈 .

The first item is obvious from the linearity of the expression from Proposition 8.22.

To show the second item, we show inclusion in both directions. For ⊆, let 𝑃𝑈 (𝑣) = 0 for some 𝑣 ∈ 𝑉 . Then the coordinates
⟨𝑣, 𝑒𝑖⟩ = 0 for all 𝑖 ∈ {1, · · · , 𝑛}. Thus, 𝑣 is perpendicular to the entirety of 𝑈 , and hence 𝑣 ∈ 𝑈 ⊥. For ⊇, let 𝑣 ∈ 𝑈 ⊥. In
particular, 𝑣 ⊥ 𝑒𝑖 for any 𝑖 ∈ {1, · · · , 𝑛}. Then,

𝑃𝑈 (𝑣) = ⟨𝑣, 𝑒1⟩ · 𝑒1 + · · · + ⟨𝑣, 𝑒𝑛⟩ · 𝑒𝑛 = 0 · 𝑒1 + · · · + 0 · 𝑒𝑛 = 0.

The third through fifth items follow also from the expression above.

The sixth item can be shown by observing the direct sum. An arbitrary 𝑣 ∈ 𝑉 admits a unique representation 𝑣 = 𝑢 +𝑤 for
𝑢 ∈ 𝑈 and 𝑤 ∈ 𝑈 ⊥. This is also a unique sum of elements 𝑤 ∈ 𝑈 ⊥ and 𝑢 ∈ 𝑈 = (𝑈 ⊥)⊥. Then, by definition, 𝑤 = 𝑃𝑈 ⊥ (𝑣).
Then, 𝑃𝑈 (𝑣) + 𝑃𝑈 ⊥ (𝑣) = 𝑣 for all 𝑣 , and hence 𝑃𝑈 + 𝑃𝑈 ⊥ = 𝐼 .

The last item is a corollary of the Pythagoren theorem (Theorem 8.4). For an arbitrary 𝑣 ∈ 𝑉 , 𝑣 = 𝑢 +𝑤 where𝑢 = 𝑃𝑈 (𝑣) ∈ 𝑈
and𝑤 ∈ 𝑈 ⊥. Then, 𝑢 ⊥ 𝑤 in particular, and hence

∥𝑣 ∥2 = ∥𝑢∥2 + ∥𝑤 ∥2 ≥ ∥𝑢∥2 ,

so ∥𝑢∥ = ∥𝑃𝑈 (𝑣)∥ ≤ ∥𝑣 ∥. □

A big property of the projection is that it gives a minimizer: the projection 𝑢 of 𝑣 is the closest point in𝑈 to 𝑣 .

In the example above, we see that𝑢 = 𝑃𝑈 (𝑣) is the closest point in𝑈 to 𝑣 . Any other𝑢′ would be able to form a right triangle,
and where ∥𝑢′ − 𝑣 ∥ is the hypotenuse that’s longer than the “leg” of length ∥𝑢 − 𝑣 ∥. This is basically the proof!

Theorem 8.24. Suppose 𝑉 is an inner product space and𝑈 is a finite-dimensional subspace. Then, for all 𝑣 ∈ 𝑉 ,

𝑃𝑈 (𝑣) = argmin
𝑢∈𝑈

∥𝑢 − 𝑣 ∥ .
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Proof. For any 𝑣 ∈ 𝑉 and 𝑢 ∈ 𝑈 ,

∥𝑢 − 𝑣 ∥2 = ∥𝑢 − 𝑃𝑈 (𝑣) + 𝑃𝑈 (𝑣) − 𝑣 ∥2

= ∥𝑢 − 𝑃𝑈 (𝑣)∥2 + ∥𝑃𝑈 (𝑣) − 𝑣 ∥2 ((𝑢 − 𝑃𝑈 (𝑣)) ⊥ (𝑃𝑈 (𝑣) − 𝑣))
≥ ∥𝑃𝑈 (𝑣) − 𝑣 ∥2 .

Thus, ∥𝑃𝑈 (𝑣) − 𝑣 ∥2 ≤ ∥𝑢 − 𝑣 ∥2 for any 𝑢 ∈ 𝑉 . The proof is complete. □

Perhaps the most useful application of this theoretical tool is in Fourier series. Let𝑉 = 𝐶0 ( [−𝜋, 𝜋]) be the set of continuous
function from [−𝜋, 𝜋] to R, which is an inner product under

⟨𝑓 , 𝑔⟩ B 1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥)𝑔(𝑥) d𝑥 .

Let’s consider some basis functions, expressed in terms of the input 𝑥 :

1
√
2
, sin𝑥, cos𝑥, sin 2𝑥, cos 2𝑥, · · · .

It’s easy to verify that they’re pairwise orthogonal with some (nasty) integral calculations. In fact, they are orthonormal.
This allows us to define subspaces

𝑈𝑛 = span(𝑥 ↦→ 1/
√
2, 𝑥 ↦→ sin𝑥, 𝑥 ↦→ cos𝑥, · · · , 𝑥 ↦→ sin(𝑛𝑥), 𝑥 ↦→ cos(𝑛𝑥))

of dimension (2𝑛 + 1). The (finite) Fourier series is then the orthogonal projection 𝑓0 of some given function 𝑓 ∈ 𝑉 :

𝑓0 (𝑥) = 𝑎0/
√
2 +

𝑛∑︁
𝑖=1

𝑎𝑛 cos(𝑛𝑥) +
𝑛∑︁
𝑖=1

𝑏𝑛 sin(𝑛𝑥),

where 

𝑎0 =
〈
𝑓 , 𝑥 ↦→ 1/

√
2
〉
=

1
√
2𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥) d𝑥,

𝑎𝑛 = ⟨𝑓 , 𝑥 ↦→ cos(𝑛𝑥)⟩ = 1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥) cos(𝑛𝑥) d𝑥,

𝑏𝑛 = ⟨𝑓 , 𝑥 ↦→ sin(𝑛𝑥)⟩ = 1
𝜋

∫ 𝜋

−𝜋
𝑓 (𝑥) sin(𝑛𝑥) d𝑥 .

Now, the orthogonal projection says that these coefficient are the best for 𝑓0 in terms of making∫ 𝜋

−𝜋
(𝑓 (𝑥) − 𝑓0 (𝑥))2 d𝑥,

the (mean) squared error of 𝑓 and 𝑓0, the smallest.

8.4 Adjoints and Self-Adjoint Operators

Prototypical Example. The adjoint of
(
1 − 𝑖 1
2 1 + 𝑖

)
∈ L(C2) is

(
1 + 𝑖 2
1 1 − 𝑖

)
∈ L(C2).

Earlier, we have seen a first attempt at formalizing an equivalent of a (conjugate) transpose of a matrix. Let 𝑇 ∈ L(𝑉 ,𝑊 ),
for which there is a natural 𝑇 ′ ∈ L(𝑊 ′,𝑉 ′) by defining

∀𝜓 ∈𝑊 ′, 𝑇 ′ (𝜓 ) B 𝜓 ◦𝑇 .

For any given linear functional 𝜓 ∈𝑊 ′, it is a function that takes a vector from𝑊 to a scalar. Now, chaining it after 𝑇 , we
get a functional in 𝑉 ′ as the output of 𝑇 ′: with input 𝑣 ∈ 𝑉 , we take𝜓 (𝑇 (𝑣)) ∈ F as the output of this functional.
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While convoluted, this is a really nice definition algebraically. But it would be better if we have something from𝑊 to𝑉 like
an actual conjugate transpose, instead of mapping𝑊 ′ to 𝑉 ′. Luckily, in finite-dimensional cases, the Riesz representation
theorem (Theorem 8.15) allows us to fix a one-to-one correspondence between vectors in𝑉 (resp.𝑊 ) and functionals in𝑉 ′

(resp.𝑊 ′).

We could chain the Riesz representation with the definition of the dual map, and get an even worse-looking definition. But
some careful calculations reveal that we can define them alternatively, in a more succinct and elegant form:

Definition 8.25. Suppose 𝑉 and 𝑊 are finite-dimensional inner product spaces. To each linear map 𝑇 ∈ L(𝑉 ,𝑊 ) is
associated uniquely its adjoint 𝑇 ∗ :𝑊 → 𝑉 , such that

⟨𝑇 (𝑣),𝑤⟩𝑊 = ⟨𝑣,𝑇 ∗ (𝑤)⟩𝑉

for all 𝑣 ∈ 𝑉 and𝑤 ∈𝑊 .

We’ll first establish that this definition is valid. Well, fixing a particular𝑤 ∈𝑊 , ⟨𝑇 (·),𝑤⟩ is a linear functional in 𝑉 ′, so the
Riesz representation theorem implies that there is some 𝑣∗ ∈ 𝑉 so that ⟨·, 𝑣∗⟩ is this particular functional. The arbitrary choice
for 𝑣 establishes the equality of the functionals. This 𝑣∗ is called 𝑇 ∗ (𝑤), which exists for any𝑤 ∈𝑊 and is unique.

Even though a transpose is a matrix and hence a linear map, we still need to check this explicitly for the adjoint.

Proposition 8.26. Suppose 𝑉 and𝑊 are finite-dimensional inner product spaces over F and 𝑇 ∈ L(𝑉 ,𝑊 ). Then, 𝑇 ∗ ∈
L(𝑊,𝑉 ).

Proof. Let 𝑐 ∈ F, 𝑣 ∈ 𝑉 , and𝑤1,𝑤2 ∈𝑊 . Then,

⟨𝑣,𝑇 ∗ (𝑐 ·𝑤1 +𝑤2)⟩ = ⟨𝑇 (𝑣), 𝑐 ·𝑤1 +𝑤2⟩ = 𝑐 · ⟨𝑇 (𝑣),𝑤1⟩+⟨𝑇 (𝑣),𝑤2⟩ = 𝑐 · ⟨𝑣,𝑇 ∗ (𝑤1)⟩+⟨𝑣,𝑇 ∗ (𝑤2)⟩ = ⟨𝑣, 𝑐 ·𝑇 ∗ (𝑤1) +𝑇 ∗ (𝑤2)⟩ .

Because 𝑣 is arbitrary, we conclude that 𝑇 ∗ (𝑐 ·𝑤1 +𝑤2) = 𝑐 ·𝑇 ∗ (𝑤1) +𝑇 ∗ (𝑤2). □

We’ll first state some general properties of the adjoint, which are also the property of the conjugate adjoint of a complex
matrix.

Proposition 8.27. Suppose𝑈 ,𝑉 ,𝑊 are finite-dimensional inner product spaces over F. Then,

• (𝑐 · 𝑆 +𝑇 )∗ = 𝑐 · 𝑆∗ +𝑇 ∗ for all 𝑐 ∈ F and 𝑆,𝑇 ∈ L(𝑉 ,𝑊 );

• (𝑇 ∗)∗ = 𝑇 for all 𝑇 ∈ L(𝑉 ,𝑊 );

• (𝑆𝑇 )∗ = 𝑇 ∗𝑆∗ for all 𝑆 ∈ L(𝑉 ,𝑊 ) and 𝑇 ∈ L(𝑈 ,𝑉 ).

Proof. We use the fact that ⟨𝑣, 𝑣1⟩ = ⟨𝑣, 𝑣2⟩ for all 𝑣 ∈ 𝑉 implies 𝑣1 = 𝑣2, because subtracting the two sides implies (𝑣1 − 𝑣2)
is orthogonal to any 𝑣 and hence (𝑣1 − 𝑣2) ∈ 𝑉⊥ = {0}.

For the first item, note that for all 𝑣 ∈ 𝑉 and𝑤 ∈𝑊 ,

⟨𝑣, (𝑐 · 𝑆 +𝑇 )∗ (𝑤)⟩ = ⟨𝑐 · 𝑆 (𝑣) +𝑇 (𝑣),𝑤⟩ = 𝑐 · ⟨𝑆 (𝑣),𝑤⟩ + ⟨𝑇 (𝑣),𝑤⟩ = 𝑐 · ⟨𝑣, 𝑆∗ (𝑤)⟩ + ⟨𝑣,𝑇 ∗ (𝑤)⟩ = ⟨𝑣, (𝑐 · 𝑆∗ +𝑇 ∗) (𝑤)⟩ .

To show the second, observe that for all 𝑣 ∈ 𝑉 and𝑤 ∈𝑊 ,

⟨𝑣, (𝑇 ∗)∗ (𝑤)⟩ = ⟨𝑇 ∗ (𝑣),𝑤⟩ = ⟨𝑣,𝑇 (𝑤)⟩ .

Lastly, it is straightforward that for all 𝑢 ∈ 𝑈 and𝑤 ∈𝑊 ,

⟨𝑢, (𝑆𝑇 )∗ (𝑤)⟩ = ⟨𝑆 (𝑇 (𝑢)),𝑤⟩ = ⟨𝑇 (𝑢), 𝑆∗ (𝑤)⟩ = ⟨𝑢,𝑇 ∗ (𝑆∗ (𝑤))⟩ .

The proof is complete. □
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The adjoint captures the null space and the range well, and we have the following theoretically useful results.

Proposition 8.28. Suppose 𝑉 and𝑊 are finite-dimensional inner product spaces and let 𝑇 ∈ L(𝑉 ,𝑊 ). Then,

• null𝑇 ∗ = (range𝑇 )⊥;

• range𝑇 ∗ = (null𝑇 )⊥;

• null𝑇 = (range𝑇 ∗)⊥;

• range𝑇 = (null𝑇 ∗)⊥.

Proof. To show the first item, note that for any𝑤 ∈𝑊 ,

𝑤 ∈ null𝑇 ∗ ⇐⇒ 𝑇 ∗ (𝑤) = 0
⇐⇒ ⟨𝑣,𝑇 ∗ (𝑤)⟩ = 0 for all 𝑣 ∈ 𝑉
⇐⇒ ⟨𝑇 (𝑣),𝑤⟩ = 0 for all 𝑣 ∈ 𝑉
⇐⇒ 𝑤 ∈ (range𝑇 )⊥.

Taking the orthogonal complement of both sides gives item 2, noting that (𝑈 ⊥)⊥ = 𝑈 .

Substituting 𝑇 ← 𝑇 ∗ and noting (𝑇 ∗)∗ = 𝑇 gives the last two items. □

Now that we have some understanding about the basic properties of the adjoint, let’s now show that this corresponds to
the conjugate transpose of a matrix.

But before we dive in, there’s a catch: we have to have orthonormal bases. This innocent assumption is by no means
trivial: under non-orthonormal bases,M(𝑇 ∗) ≠ M(𝑇 )⊤ in general! Let’s first state the result, and then take a look at why
orthonormal bases are such a big deal.

Proposition 8.29. Let 𝑉 and𝑊 be finite-dimensional inner product spaces over F and suppose 𝑇 ∈ L(𝑉 ,𝑊 ). Then, for
any orthonormal bases V of 𝑉 and W of𝑊 ,

MW,V (𝑇 ∗) = MV,W (𝑇 )
⊤
.

Proof. Let V = 𝑒1, · · · , 𝑒𝑛 andW = 𝑓1, · · · , 𝑓𝑚 be orthonormal bases of 𝑉 and𝑊 respectively. Then, for each 𝑖 ∈ {1, · · · ,𝑚},
the 𝑖-th column of M(𝑇 ∗) holds the coefficients of 𝑇 ∗ (𝑓𝑖 ) ∈ 𝑉 under the basis 𝑒1, · · · , 𝑒𝑛 . For any 𝑗 ∈ {1, · · · , 𝑛},

M(𝑇 ∗) 𝑗,𝑖 =
〈
𝑇 ∗ (𝑓𝑖 ), 𝑒 𝑗

〉
=

〈
𝑓𝑖 ,𝑇 (𝑒 𝑗 )

〉
=

〈
𝑇 (𝑒 𝑗 ), 𝑓𝑖

〉
= M(𝑇 )𝑖, 𝑗 .

The proof is complete. □

Note how we had to use the orthonormal basis to get the coefficients: this is can’t be done simply with the inner product.
Under only an orthonormal basis do we have M(𝑣)⊤M(𝑤) = ⟨𝑣,𝑤⟩.

8.5 Self-Adjoint Operators

Prototypical Example. Conjugate symmetric matrices in C𝑛 , or the operator of any observable in elementary quantum
mechanics.

In an inner product space, we can finally characterize what conjugate symmetric matrices really are: they are self-adjoint
operators. By the way, if 𝑇 ∈ L(𝑉 ,𝑊 ) with 𝑉 = 𝑊 , then the operators 𝑇 and 𝑇 ∗ don’t even have the same domain and
hence cannot possibly be equal.
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Definition 8.30. Suppose 𝑉 is a finite-dimensional inner product space. An operator 𝑇 ∈ L(𝑉 ) is said to be self-adjoint if
𝑇 = 𝑇 ∗; that is, for all 𝑣,𝑤 ∈ 𝑉 ,

⟨𝑇 (𝑣),𝑤⟩ = ⟨𝑣,𝑇 (𝑤)⟩ .

What do the matrix of such an operator look like? Well, 𝑇 = 𝑇 ∗, so M(𝑇 ) = M(𝑇 ∗) = M(𝑇 )⊤ under any orthonormal
basis (recall why this may not hold if the basis is not orthonormal!). In other words, the matrix of a self-adjoint operator is
conjugate symmetric under an orthonormal basis. The converse turns out to hold as well from some calculation.

Proposition 8.31. Suppose 𝑉 is a finite-dimensional inner product space and let 𝑒1, · · · , 𝑒𝑛 be an orthonormal basis of 𝑉 .
Then, for any 𝑇 ∈ L(𝑉 ), 𝑇 is self-adjoint if and only ifM(𝑇 ) is conjugate symmetric.

Proof. Both directions are verified by direct calculation.

“If” direction. SupposeM(𝑇 ) = M(𝑇 )⊤ = M(𝑇 ∗) (Proposition 8.29). Then, 𝑇 = 𝑇 ∗.

“Only if” direction. Suppose now that 𝑇 = 𝑇 ∗. Then,M(𝑇 ) = M(𝑇 ∗) = M(𝑇 )⊤. □

Some very useful results follow immediately. The first one we present is the generalization of the following fact fromMATH
220: the eigenvalues of conjugate symmetric matrices are real.

Proposition 8.32. Let𝑇 ∈ L(𝑉 ) be a self-adjoint operator on a finite-dimensional inner product space𝑉 . Then, 𝐸 (𝑇 ) ⊂ R.

Proof. Let 𝜆 ∈ 𝐸 (𝑇 ) be an eigenvalue of 𝑇 and fix 𝑣 ∈ 𝐸 (𝑇, 𝜆)\{0}. Then,

𝜆 · ∥𝑣 ∥2 = ⟨𝑇 (𝑣), 𝑣⟩ = ⟨𝑣,𝑇 (𝑣)⟩ = 𝜆 · ∥𝑣 ∥2 ,

so dividing both sides by ∥𝑣 ∥2 ≠ 0 gives 𝜆 = 𝜆, and hence 𝜆 ∈ R. □

Some useful results from [1] are also presented as follows.

Proposition 8.33. Suppose 𝑉 is a complex inner product space and 𝑇 ∈ L(𝑉 ). Then, 𝑇 = 0 if and only if ⟨𝑇 (𝑣), 𝑣⟩ = 0 for
all 𝑣 ∈ 𝑉 .

Proof. The only if direction is obvious. Now suppose ⟨𝑇 (𝑣), 𝑣⟩ = 0 for any 𝑣 ∈ 𝑉 . Then, for all 𝑢,𝑤 ∈ 𝑉 ,

⟨𝑇 (𝑢),𝑤⟩ = ⟨𝑇 (𝑢 +𝑤), 𝑢 +𝑤⟩ − ⟨𝑇 (𝑢 −𝑤), 𝑢 −𝑤⟩4 + ⟨𝑇 (𝑢 + 𝑖𝑤), 𝑢 + 𝑖𝑤⟩ − ⟨𝑇 (𝑢 − 𝑖𝑤), 𝑢 − 𝑖𝑤⟩4 𝑖 = 0,

where the first equality can be seen by expanding the right hand side. The proof is finished. □

Note that the result above is clearly false for real inner product spaces. Consider, for example, the 90° counterclockwise
rotation operator on R2. Every vector is perpendicular to itself rotated 90°, but this operator is not zero. While we can rotate
in the real case to get this perpendicularity, this won’t hold in the complex case: multiplication by an imaginary number
reaches the rotation, so that perpendicularity cannot possibly hold.

While this fact seems out of nowhere, it is significant in the following way: we can simplify the definition of self-adjoint
operators by changing 𝑣,𝑤 to just 𝑣 :

Corollary 8.34. Suppose𝑉 is a complex inner product space and𝑇 ∈ L(𝑉 ). Then,𝑇 is self-adjoint if and only if ⟨𝑇 (𝑣), 𝑣⟩ =
⟨𝑣,𝑇 (𝑣)⟩ for all 𝑣 ∈ 𝑉 . In other words, 𝑇 is self-adjoint if and only if ⟨𝑇 (𝑣), 𝑣⟩ ∈ R.

Proof. If 𝑇 is self-adjoint, then taking 𝑣 = 𝑤 in particular in the definition gives ⟨𝑇 (𝑣), 𝑣⟩ = ⟨𝑣,𝑇 (𝑣)⟩ for all 𝑣 ∈ 𝑉 . We now
show the other direction, by supposing ⟨𝑇 (𝑣), 𝑣⟩ = ⟨𝑣,𝑇 (𝑣)⟩ for an arbitrary 𝑣 ∈ 𝑉 . Then,

⟨(𝑇 −𝑇 ∗) (𝑣), 𝑣⟩ = ⟨𝑇 (𝑣), 𝑣⟩ − ⟨𝑇 ∗ (𝑣), 𝑣⟩ = ⟨𝑣,𝑇 (𝑣)⟩ − ⟨𝑣,𝑇 (𝑣)⟩ = 0,

which implies 𝑇 −𝑇 ∗ = 0 by the previous Proposition. Then, 𝑇 = 𝑇 ∗, and 𝑇 is self-adjoint. □
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We end with another result about the perpendicularity, by replacing the condition of complex inner product space with the
imposition that 𝑇 be self-adjoint. Unfortunately, this proof also uses an equality that isn’t quite familiar to us.

Proposition 8.35. Suppose 𝑉 is a finite-dimensional inner product space and 𝑇 is self-adjoint. Then, 𝑇 = 0 if and only if
⟨𝑇 (𝑣), 𝑣⟩ = 0 for all 𝑣 ∈ 𝑉 .

Proof. We have already shown this is true for a complex inner product space. Now suppose𝑉 is a real inner product space.
If 𝑇 = 0, then the other follows immediately. We therefore show the other direction by supposing ⟨𝑇 (𝑣), 𝑣⟩ = 0 for an
arbitrary 𝑣 ∈ 𝑉 . Then, for any 𝑢,𝑤 ∈ 𝑉 ,

⟨𝑇 (𝑢),𝑤⟩ = ⟨𝑇 (𝑢 +𝑤), 𝑢 +𝑤⟩ − ⟨𝑇 (𝑢 −𝑤), 𝑢 −𝑤⟩4 = 0.

To show the first equality, we expand the right hand side:

⟨𝑇 (𝑢 +𝑤), 𝑢 +𝑤⟩ − ⟨𝑇 (𝑢 −𝑤), 𝑢 −𝑤⟩
4

=
⟨𝑇 (𝑢), 𝑢⟩ + ⟨𝑇 (𝑢),𝑤⟩ + ⟨𝑇 (𝑤), 𝑢⟩ + ⟨𝑇 (𝑤),𝑤⟩

4 − ⟨𝑇 (𝑢), 𝑢⟩ − ⟨𝑇 (𝑢),𝑤⟩ − ⟨𝑇 (𝑤), 𝑢⟩ + ⟨𝑇 (𝑤),𝑤⟩4

=
⟨𝑇 (𝑢),𝑤⟩ + ⟨𝑇 (𝑤), 𝑢⟩

2

=
⟨𝑇 (𝑢),𝑤⟩ + ⟨𝑤,𝑇 (𝑢)⟩

2

=
⟨𝑇 (𝑢),𝑤⟩ + ⟨𝑇 (𝑢),𝑤⟩

2
= ⟨𝑇 (𝑢),𝑤⟩ .

The proof is complete. □

Finally, we’ll go back to the concept of orthogonal projection a bit. It turns out that every orthogonal projection is self-
adjoint.

Proposition 8.36. Suppose𝑉 is a finite-dimensional inner product space and let𝑈 be a subspace. Then, 𝑃𝑈 is self-adjoint.

Proof. Suppose 𝑣,𝑤 ∈ 𝑉 and fix an orthonormal basis 𝑒1, · · · , 𝑒𝑘 of𝑈 . Then, with all sums from 𝑖 = 1 to 𝑘 ,

⟨𝑃𝑈 (𝑣),𝑤⟩ =
〈∑︁

𝑖

⟨𝑣, 𝑒𝑖⟩ · 𝑒𝑖 ,𝑤
〉

=
∑︁
𝑖

⟨𝑣, 𝑒𝑖⟩ · ⟨𝑒𝑖 ,𝑤⟩

=
∑︁
𝑖

⟨𝑤, 𝑒𝑖⟩ · ⟨𝑣, 𝑒𝑖⟩

=

〈
𝑣,

∑︁
𝑖

⟨𝑤, 𝑒𝑖⟩ · 𝑒𝑖

〉
= ⟨𝑣, 𝑃𝑢 (𝑤)⟩ .

The proof is complete. □

What’s more, there is a converse to this: any idempotent, self-adjoint linear operator 𝑇 ∈ L(𝑉 ) is an orthogonal projec-
tion—specifically, onto its range. As a reminder, 𝑇 is idempotent iff 𝑇 = 𝑇 2.

Proposition 8.37. Suppose 𝑉 is a finite-dimensional inner product space. Then, 𝑇 = 𝑃𝑈 for some subspace 𝑈 of 𝑉 if and
only if 𝑇 is idempotent and self-adjoint. In this case,𝑈 = range𝑇 .
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Proof. One direction has already been shown. We now suppose 𝑇 = 𝑇 2 and 𝑇 = 𝑇 ∗. Fix an orthonormal basis 𝑒1, · · · , 𝑒𝑘
of 𝑈 B range𝑇 . Note that 𝑇 (𝑒𝑖 ) = 𝑒𝑖 for all 𝑖 ∈ {1, · · · , 𝑘}: because 𝑒𝑖 ∈ range𝑇 , fix 𝑣𝑖 ∈ 𝑉 such that 𝑇 (𝑣𝑖 ) = 𝑒𝑖 ; then,
𝑇 (𝑒𝑖 ) = 𝑇 2 (𝑣𝑖 ) = 𝑇 (𝑣𝑖 ) = 𝑒𝑖 . Hence,

⟨𝑇 (𝑣), 𝑒𝑖⟩ = ⟨𝑣,𝑇 (𝑒𝑖 )⟩ = ⟨𝑣, 𝑒𝑖⟩ .

Because the coordinates of 𝑇 (𝑣) and 𝑃𝑈 (𝑣) agree under the orthonormal basis, 𝑃𝑈 = 𝑇 . □

8.6 Normal Operators

An important class of operators that we didn’t talk about in depth in MATH 220 is the class of normal operators. In fact,
as we will see later, in the complex case, this is the precisely the collection of all linear operators diagonalizable under an
orthonormal basis.

Definition 8.38. Suppose 𝑉 is a finite-dimensional inner product space. 𝑇 is said to be normal if 𝑇 ∗𝑇 = 𝑇𝑇 ∗.

A useful characterization of the normality is given by the norm.

Proposition 8.39. Suppose 𝑉 is a finite-dimensional inner product space and 𝑇 ∈ L(𝑉 ). Then, 𝑇 is normal if and only if
∥𝑇 (𝑣)∥ = ∥𝑇 ∗ (𝑣)∥ for all 𝑣 ∈ 𝑉 .

Proof. Note that 𝑇 ∗𝑇 − 𝑇𝑇 ∗ is a self-adjoint operator, because (𝑇 ∗𝑇 − 𝑇𝑇 ∗)∗ = (𝑇 ∗𝑇 )∗ − (𝑇𝑇 ∗)∗ = 𝑇 ∗𝑇 − 𝑇𝑇 ∗. Then,
Proposition 8.35 states 𝑇 ∗𝑇 −𝑇𝑇 ∗ = 0 if and only if ⟨(𝑇 ∗𝑇 −𝑇𝑇 ∗) (𝑣), 𝑣⟩ = 0 for all 𝑣 ∈ 𝑉 . Therefore,

𝑇 is normal ⇐⇒ 𝑇 ∗𝑇 −𝑇𝑇 ∗ = 0
⇐⇒ ⟨(𝑇 ∗𝑇 −𝑇𝑇 ∗) (𝑣), 𝑣⟩ = 0 for all 𝑣 ∈ 𝑉
⇐⇒ ⟨(𝑇 ∗𝑇 ) (𝑣), 𝑣⟩ = ⟨(𝑇𝑇 ∗) (𝑣), 𝑣⟩ for all 𝑣 ∈ 𝑉
⇐⇒ ⟨𝑇 (𝑣),𝑇 ∗ (𝑣)⟩ = ⟨𝑇 ∗ (𝑣),𝑇 ∗ (𝑣)⟩ for all 𝑣 ∈ 𝑉
⇐⇒ ∥𝑇 (𝑣)∥ = ∥𝑇 ∗ (𝑣)∥ for all 𝑣 ∈ 𝑉 .

The proof is complete. □

Our first big result will be about the eigenvalues and eigenvectors.

Theorem 8.40. Suppose 𝑉 is a finite-dimensional inner product space and let 𝑇 ∈ L(𝑉 ) be normal. If 𝑣 is a 𝜆-eigenvector of
𝑇 , then 𝑣 is also a 𝜆-eigenvector of 𝑇 ∗.

Proof. First, for any eigenvalue 𝜆 ∈ 𝐸 (𝑇 ), note that (𝑇 − 𝜆 · 𝐼 )∗ (𝑇 − 𝜆 · 𝐼 ) is normal too. Indeed,

(𝑇 − 𝜆 · 𝐼 )∗ (𝑇 − 𝜆 · 𝐼 ) = (𝑇 ∗ − 𝜆 · 𝐼 ) (𝑇 − 𝜆 · 𝐼 ) = 𝑇 ∗𝑇 − 𝜆 ·𝑇 ∗ − 𝜆 ·𝑇 + |𝜆 |2 · 𝐼
(𝑇 − 𝜆 · 𝐼 ) (𝑇 − 𝜆 · 𝐼 )∗ = (𝑇 − 𝜆 · 𝐼 ) (𝑇 ∗ − 𝜆 · 𝐼 ) = 𝑇𝑇 ∗ − 𝜆 ·𝑇 ∗ − 𝜆 ·𝑇 + |𝜆 |2 · 𝐼 .

Because 𝑇 ∗𝑇 = 𝑇𝑇 ∗, the left hand sides agree as well.

Thus, for any eigenvector 𝑣 ∈ 𝐸 (𝑇, 𝜆)\{0}, we have

0 = ∥𝑇 (𝑣) − 𝜆 · 𝑣 ∥2 = ⟨(𝑇 − 𝜆 · 𝐼 ) (𝑣), (𝑇 − 𝜆 · 𝐼 ) (𝑣)⟩
= ⟨𝑣, (𝑇 − 𝜆 · 𝐼 )∗ (𝑇 − 𝜆 · 𝐼 ) (𝑣)⟩
= ⟨𝑣, (𝑇 − 𝜆 · 𝐼 ) (𝑇 − 𝜆 · 𝐼 )∗ (𝑣)⟩
= ⟨(𝑇 − 𝜆 · 𝐼 )∗ (𝑣), (𝑇 − 𝜆 · 𝐼 )∗ (𝑣)⟩
= ∥(𝑇 − 𝜆 · 𝐼 )∗ (𝑣)∥2 .

Then, (𝑇 ∗ − 𝜆 · 𝐼 ) (𝑣) = 0, so 𝑣 ∈ 𝐸 (𝑇, 𝜆)\{0}. □
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Of course, this also goes both ways:

Corollary 8.41. Suppose 𝑉 is a finite-dimensional inner product space and let 𝑇 ∈ L(𝑉 ) be normal. Then, 𝐸 (𝑇 ∗) = 𝐸 (𝑇 )
and 𝐸 (𝑇, 𝜆) = 𝐸 (𝑇 ∗, 𝜆) for all 𝜆 ∈ 𝐸 (𝑇 ).

Proof. We have shown inclusion of both in one direction. Now apply the Proposition to 𝑇 ∗ and note (𝑇 ∗)∗ = 𝑇 to show
inclusion in the other direction. □

Our last result is an extension of Proposition 6.5. For normal operators, eigenvectors corresponding to distinct eigenvalues
are not just independent; they are orthogonal.

Proposition 8.42. Suppose 𝑇 ∈ L(𝑉 ) is a normal operator over a finite-dimensional inner product space 𝑉 . Then, eigen-
vectors corresponding to distinct eigenvalues are orthogonal.

Proof. Let 𝑣1 ∈ 𝐸 (𝑇, 𝜆1)\{0} be a 𝜆1-eigenvector and 𝑣1 ∈ 𝐸 (𝑇, 𝜆1)\{0} a 𝜆2-eigenvector. Then, applying Proposition 8.40,
we have

(𝜆1 − 𝜆2) ⟨𝑣1, 𝑣2⟩ = ⟨𝜆1 · 𝑣1, 𝑣2⟩ −
〈
𝑣1, 𝜆2 · 𝑣2

〉
= ⟨𝑇 (𝑣1, 𝑣2⟩ − ⟨𝑣1,𝑇 ∗ (𝑣2)⟩
= 0.

Because 𝜆1 ≠ 𝜆2, this implies ⟨𝑣1, 𝑣2⟩ = 0, as desired. □

8.7 Spectral Theorems

We’ve already seen before some equivalent conditions of diagonalizability: we need a basis of eigenvectors, or equivalently,
the direct sum of all eigenspaces is the vector space. In inner product spaces, we have more ways to classify operators, like
self-adjoint and normal ones. How do these definitions in an inner product space interact with the concept of diagonaliz-
ability?

First, we can add one additional qualification to our previous definition of diagonalizability: we will look for operators that
are diagonalizable under an orthonormal basis.

Definition 8.43. Suppose 𝑉 is a finite-dimensional inner product space. An operator 𝑇 ∈ L(𝑉 ) is said to be orthogonally
diagonalizable if M(𝑇 ) is diagonal under some orthonormal basis.

Here, we can replace the phrasing “orthonormal basis” at the end with “orthogonal basis.” If M(𝑇 ) is diagonal under an
orthogonal basis, then M(𝑇 ) is clearly the same matrix in the orthonormal basis from normalizing the old one.

But, this additional assumption that the basis is orthogonal/orthonormal is not trivial: not all diagonalizable operators are
orthogonally diagonalizable. For example, if 𝑇 ∈ L(R2) is the operator that doesn’t change (1, 0) but doubles (1, 1), it is
clearly diagonalizable under the basis formed by these two vectors. However, there’s no way to get rid of the 45° angle
between the two vectors: the matrix is not orthogonally diagonalizable in the inner product space.

How might this definition be useful? Let’s take a look from a computational standpoint as a computer scientist. Say
𝑇 ∈ L(R𝑛) is diagonalizable as

M(𝑇 ) =
©«
𝜆1

. . .

𝜆𝑛

ª®®¬
under some basis 𝑣1, · · · , 𝑣𝑛 and we want to compute𝑇𝑘 (𝑣) for a large 𝑘 . If we have the coordinates 𝑣 = 𝑐1 · 𝑣1 + · · · + 𝑐𝑛 · 𝑣𝑛 ,
then the actual computation is simply 𝑇𝑘 (𝑣) = 𝑐1𝜆

𝑘
1 · 𝑣1 + · · · + 𝑐1𝜆𝑘𝑛 · 𝑣𝑛 which is𝑂 (𝑛). Even without an orthonormal basis,

we have a significant speedup against the 𝑂 (𝑘𝑛2) naive calculation.

50



But, we still need ©«
𝑐1
...

𝑐𝑛

ª®®¬ =
©«
| |
𝑣1 · · · 𝑣𝑛
| |

ª®¬
−1

· 𝑣

to get the coefficients with a regular basis. However, if it is an orthonormal basis, we can simply do

𝑐𝑖 = ⟨𝑣, 𝑣𝑖⟩ .

Of course, caching the inverse matrix in advance means both take 𝑂 (𝑛2) in practice, but the latter is nonetheless much
preferable in implementation.

Okay, now we know why orthogonally diagonalizable matrices are nice, and we also established not all diagonalizable
matrices are orthogonally diagonalizable. So what are these matrices exactly? It turns out they’re precisely self-adjoint and
normal operators in the real and complex cases, respectively. These two theoretically beautiful results are known as spectral
theorems.

We will first tackle the complex case, for which we have enough machinery at this point.

Theorem 8.44 (Complex Spectral Theorem). Suppose 𝑉 is a finite-dimensional complex inner product space and 𝑇 ∈ L(𝑉 ).
Then, 𝑇 is orthogonally diagonalizable if and only if 𝑇 is normal.

Note that the only operator on a 0-dimensional inner product space is the identity/zero operator, which is trivially normal
and orthogonally diagonalizable. The following proof addresses the cases with dim𝑉 ∈ N+.

Proof. The “only if” direction is direct. We perform induction on dim𝑉 for the other direction.

“If” direction. Let 𝑇 ∈ L(𝑉 ) be normal. The base case is trivial: all operators in a 1-dimensional inner product space are
both normal and orthogonally diagonalizable. We now suppose inductively that 𝑛 B dim𝑉 > 1 and all normal operators
on an (𝑛 − 1)-dimensional real inner product space are orthogonally diagonalizable. Fix an eigenvalue 𝜆1 ∈ 𝐸 (𝑇 ) of 𝑇 by
Theorem 6.10 as well as an associated eigenvector 𝑣1 ∈ 𝐸 (𝑇, 𝜆1)\{0}. Let 𝑒1 B 𝑣1/∥𝑣1∥, which is also a 𝜆1-eigenvector.
Consider the (𝑛 − 1)-dimensional orthogonal complement𝑊 B span(𝑒1)⊥, which we claim is 𝑇 -invariant. Indeed, for an
arbitrary 𝑤 ∈ 𝑊 , ⟨𝑇 (𝑤), 𝑒1⟩ = ⟨𝑤,𝑇 ∗ (𝑒1)⟩ =

〈
𝑤, 𝜆1 · 𝑒1

〉
= 𝜆1 · 0 = 0 by Proposition 8.40. Hence, 𝑇 |𝑊 ∈ L(𝑊 ) on the

(𝑛 − 1)-dimensional𝑊 is orthogonally diagonalizable under some orthonormal basis 𝑒2, · · · , 𝑒𝑛 of𝑊 as

M(𝑇 |𝑊 ) =
©«
𝜆2

. . .

𝜆𝑛

ª®®¬ .
Then,𝑇 (𝑒𝑖 ) = 𝜆𝑖 ·𝑒𝑖 for all 𝑖 ∈ {1, · · · , 𝑛}, where 𝑒1, · · · , 𝑒𝑛 is an orthonormal basis of𝑉 . Then,𝑇 is orthogonally diagonalizable
under 𝑒1, · · · , 𝑒𝑛 .

“Only if” direction. Let M(𝑇 ) be diagonal with diagonal entries 𝜆1, · · · , 𝜆𝑛 under an orthonormal basis 𝑒1, · · · , 𝑒𝑛 . Then,
M(𝑇 ∗) = M(𝑇 )⊤ is also diagonal. Because diagonal matrices commute, M(𝑇𝑇 ∗) = M(𝑇 ∗𝑇 ), and this implies 𝑇𝑇 ∗ =

𝑇 ∗𝑇 . □

There’s a pitfall: even though M(𝑇 ) is diagonal, this is not necessarily conjugate symmetric! Note that the diagonal may
be complex and not real, in which case𝑇 cannot be self-adjoint. Indeed, if all eigenvalues of a normal operator are real, the
above argument shows that the normal operator is further self-adjoint.

In the real case, things are a bit more subtle. It turns out that not all normal matrices are orthogonally diagonalizable.
Consider, for example, 𝑇 ∈ L(R3) defined by 𝑇 (𝑥,𝑦, 𝑧) B (𝑥 − 𝑧,𝑦, 𝑥 + 𝑧) or

M(𝑇 ) = ©«
1 0 −1
0 1 0
1 0 1

ª®¬ .
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Whether real or complex, 𝑇 is normal but not self-adjoint. Considered as a complex operator, 𝑇 has 3 distinct eigenvalues
1, 1 + 𝑖, 1 − 𝑖 , but that means 𝑇 only has one eigenvalue as a real operator, and there’s no way to get an eigenbasis that is
orthonormal.

The stronger condition we need is that 𝑇 must be self-adjoint. A real operator may not have an eigenvalue, which is
precisely where the proof in the complex case fails here. But a self-adjoint operator always has an eigenvalue. Intuitively,
complexifying it gives a complex operator that will have an eigenvalue, which must be real.

Lemma 8.45. Let 𝑉 be a finite-dimensional real inner product space and suppose 𝑇 ∈ L(𝑉 ) is self-adjoint. Then, 𝑇 has an
eigenvalue.

Proof. Fix an orthonormal basis 𝑒1, · · · , 𝑒𝑛 of 𝑉 . Then,M(𝑇 ) is conjugate symmetric.

We make 𝑉C an inner product space by endowing the inner product

⟨𝑣,𝑤⟩𝑉C B 𝑥1𝑦1 + · · · + 𝑥𝑛𝑦𝑛

where 𝑣 = 𝑥1 · 𝑒1 + · · · + 𝑥𝑛 · 𝑒𝑛 ∈ 𝑉C and 𝑤 = 𝑦1 · 𝑒1 + · · · + 𝑦𝑛 · 𝑒𝑛 ∈ 𝑉C. The axioms are satisfied, which guarantees the
validity of the inner product. Note that 𝑒1, · · · , 𝑒𝑛 remains an orthonormal basis in 𝑉C.

We claim that𝑇C is self-adjoint. Indeed, becauseM(𝑇 ) = M(𝑇C) by Proposition 7.21,M(𝑇C) is also conjugate symmetric,
and Proposition 8.31 implies that 𝑇C is also self-adjoint. Fix an eigenvalue 𝜆 ∈ C of 𝑇C. Then, 𝜆 must be real by Proposition
8.32.

Because 𝜒𝑇 = 𝜒𝑇C , we conclude that 𝜆 ∈ R must be an eigenvalue of 𝑇 . □

The real spectral theorem now follows the same logic.

Theorem 8.46 (Real Spectral Theorem). Suppose 𝑉 is a finite-dimensional real inner product space and 𝑇 ∈ L(𝑉 ). Then, 𝑇 is
orthogonally diagonalizable if and only if 𝑇 is self-adjoint.

We assume dim𝑉 ∈ N+ as well.

Proof. The “only if” direction is direct. We perform induction on dim𝑉 for the other direction.

“If” direction. Let 𝑇 ∈ L(𝑉 ) be self-adjoint. The base case is trivial: all operators in a 1-dimensional inner product space
are both self-adjoint and orthogonally diagonalizable. We now suppose inductively that 𝑛 B dim𝑉 > 1 and all self-adjoint
operators on an (𝑛 − 1)-dimensional real inner product space are orthogonally diagonalizable. Fix an eigenvalue 𝜆1 ∈ 𝐸 (𝑇 )
of 𝑇 by the Lemma above as well as an associated eigenvector 𝑣1 ∈ 𝐸 (𝑇, 𝜆1)\{0}. Let 𝑒1 B 𝑣1/∥𝑣1∥, which is also a 𝜆1-
eigenvector. Consider the (𝑛 − 1)-dimensional orthogonal complement𝑊 B span(𝑒1)⊥, which we claim is 𝑇 -invariant.
Indeed, for an arbitrary𝑤 ∈𝑊 , ⟨𝑇 (𝑤), 𝑒1⟩ = ⟨𝑤,𝑇 ∗ (𝑒1)⟩ =

〈
𝑤, 𝜆1 · 𝑒1

〉
= 𝜆1 · 0 = 0 by Proposition 8.40. Hence,𝑇 |𝑊 ∈ L(𝑊 )

on the (𝑛 − 1)-dimensional𝑊 is orthogonally diagonalizable under some orthonormal basis 𝑒2, · · · , 𝑒𝑛 of𝑊 as

M(𝑇 |𝑊 ) =
©«
𝜆2

. . .

𝜆𝑛

ª®®¬ .
Then,𝑇 (𝑒𝑖 ) = 𝜆𝑖 ·𝑒𝑖 for all 𝑖 ∈ {1, · · · , 𝑛}, where 𝑒1, · · · , 𝑒𝑛 is an orthonormal basis of𝑉 . Then,𝑇 is orthogonally diagonalizable
under 𝑒1, · · · , 𝑒𝑛 .

“Only if” direction. LetM(𝑇 ) be diagonal with diagonal entries 𝜆1, · · · , 𝜆𝑛 under an orthonormal basis 𝑒1, · · · , 𝑒𝑛 . A real
diagonal matrix is symmetric, so Proposition 8.31 implies that 𝑇 is self-adjoint. □
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8.8 Isometries

Prototypical Example. The operator on R2 that first rotates 90° and then flips w.r.t. the 𝑦-axis.

We now consider another family of linear operators over an inner product space—the ones that preserve the length of any
vector. For example, in R2, any rotation is isometry, and so is any reflection w.r.t. a line. We now make this idea more
precise, and look into some of their properties.

Definition 8.47. Suppose 𝑉 is an inner product space. An operator 𝑆 ∈ L(𝑉 ) is said to be an isometry if ∥𝑆 (𝑣)∥ = ∥𝑣 ∥ for
all 𝑣 ∈ 𝑉 .

It turns out that these are also precisely the operators that preserve the inner product, a seemingly much stronger/harder-
to-meet condition.

Proposition 8.48. Suppose 𝑉 is an inner product space and 𝑆 ∈ L(𝑉 ). Then, 𝑆 is an isometry if and only if ⟨𝑆 (𝑣), 𝑆 (𝑤)⟩ =
⟨𝑣,𝑤⟩ for all 𝑣,𝑤 ∈ 𝑉 .

Proof. The “if” direction is obvious by substituting𝑤 = 𝑣 . We show the “only if” direction through the polarization inequal-
ity, supposing 𝑆 is an isometry.

If the field underlying 𝑉 is R, then for all 𝑣,𝑤 ∈ 𝑉 , we have through the polarization identity

⟨𝑆 (𝑣), 𝑆 (𝑤)⟩ = 1
4 (∥𝑆 (𝑣) + 𝑆 (𝑤)∥

2 − ∥𝑆 (𝑣) − 𝑆 (𝑤)∥2)

=
1
4 (∥𝑆 (𝑣 +𝑤)∥

2 − ∥𝑆 (𝑣 −𝑤)∥2)

=
1
4 (∥𝑣 +𝑤 ∥

2 − ∥𝑣 −𝑤 ∥2)

= ⟨𝑣,𝑤⟩ .

If the field underlying 𝑉 is R, then for all 𝑣,𝑤 ∈ 𝑉 , we have through the polarization identity

⟨𝑆 (𝑣), 𝑆 (𝑤)⟩ = 1
4 (∥𝑆 (𝑣) + 𝑆 (𝑤)∥

2 − ∥𝑆 (𝑣) − 𝑆 (𝑤)∥2 + 𝑖 ∥𝑆 (𝑣) + 𝑖𝑆 (𝑤)∥2 − 𝑖 ∥𝑆 (𝑣) − 𝑖𝑆 (𝑤)∥2)

=
1
4 (∥𝑆 (𝑣 +𝑤)∥

2 − ∥𝑆 (𝑣 −𝑤)∥2 + 𝑖 ∥𝑆 (𝑣 + 𝑖𝑤)∥2 − 𝑖 ∥𝑆 (𝑣 − 𝑖𝑤)∥2)

=
1
4 (∥𝑣 +𝑤 ∥

2 − ∥𝑣 −𝑤 ∥2 + 𝑖 ∥𝑣 + 𝑖𝑤 ∥2 − 𝑖 ∥𝑣 − 𝑖𝑤 ∥2)

= ⟨𝑣,𝑤⟩ .

The proof is now complete. □

We know that an eigenvalue stretches associated eigenvectors by a scalar factor of that eigenvalue. It is then intuitive
that we can only stretch by “1,” or more precisely, by scalars whose absolute value is 1. Indeed, we have the following
result.

Proposition 8.49. Suppose 𝑉 is an inner product space and 𝑆 ∈ L(𝑉 ) is an isometry. Then, any eigenvalue of 𝑆 has
modulus 1.

Proof. Suppose 𝜆 is an eigenvalue of 𝑆 . Let 𝑣 ∈ 𝐸 (𝑆, 𝜆) be an associated eigenvector. Then,

∥𝑣 ∥ = ∥𝑆 (𝑣)∥ = ∥𝜆 · 𝑣 ∥ = |𝜆 | · ∥𝑣 ∥ .

Because ∥𝑣 ∥ ≠ 0, dividing by the norm from both sides yields |𝜆 | = 1. □
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The matrix of such operators are known by the name of orthogonal matrices in the real case, and unitary matrices in the
complex case. A result from MATH 220 is that its inverse equals its conjugate transpose. Indeed, we have the follow-
ing:

Proposition 8.50. Suppose𝑉 is a finite-dimensional inner product space and 𝑆 ∈ L(𝑉 ). Then, 𝑆 is an isometry if and only
if 𝑆∗𝑆 = 𝐼 . If this holds, then further 𝑆∗𝑆 = 𝑆𝑆∗ = 𝐼 .

Proof. Both directions are straightforward calculations.

“If” direction. Suppose 𝑆∗𝑆 = 𝐼 . Then, for all 𝑣,𝑤 ∈ 𝑉 ,

⟨𝑆 (𝑣), 𝑆 (𝑤)⟩ = ⟨(𝑆∗𝑆) (𝑣),𝑤⟩ = ⟨𝑣,𝑤⟩ ,

so Proposition 8.48 implies that 𝑆 is an isometry.

“Only if” direction. Let 𝑆 be an isometry. Fix an orthonormal basis 𝑒1, · · · , 𝑒𝑛 of 𝑉 . By Proposition 8.48,

M(𝑆∗𝑆) 𝑗,𝑖 =
〈
(𝑆∗𝑆) (𝑒𝑖 ), 𝑒 𝑗

〉
=

〈
𝑆𝑒𝑖 , 𝑆𝑒 𝑗

〉
=

〈
𝑒𝑖 , 𝑒 𝑗

〉
= 𝛿𝑖, 𝑗 = M(𝐼 ) 𝑗,𝑖 ,

so 𝑆∗𝑆 = 𝐼 .

Now suppose both are simultaneously true. Because the composition of 𝑆∗ and 𝑆 is injective, both 𝑆∗ and 𝑆 must be injective,
and hence invertible (Proposition 4.20). The uniqueness of the inverse then implies 𝑆∗𝑆 = 𝑆𝑆∗ = 𝐼 . □

Another related idea is how an orthonormal basis is mapped under an isometry: an isometry preserves orthonormal bases.
We actually have something even stronger:

Proposition 8.51. Suppose𝑉 is an inner product space and let 𝑆 ∈ L(𝑉 ). Then, 𝑆 is an isometry if and only if 𝑆𝑒1, · · · , 𝑆𝑒𝑛
is also an orthonormal basis of 𝑉 for some orthonormal basis 𝑒1, · · · , 𝑒𝑛 of 𝑉 .

Proof. We make extensive use of the Pythagorean theorem (Theorem 8.4) to bridge the gap between norms and the or-
thonormality of the bases.

“If” direction. Suppose 𝑆𝑒1, · · · , 𝑆𝑒𝑛 is an orthonormal basis of 𝑉 for some orthonormal basis 𝑒1, · · · , 𝑒𝑛 of 𝑉 . Then, the
Pythagorean theorem implies

∥𝑆 (𝑣)∥ =
𝑆

(
𝑛∑︁
𝑖=1
⟨𝑣, 𝑒𝑖⟩ · 𝑒𝑖

) =
 𝑛∑︁
𝑖=1
⟨𝑣, 𝑒𝑖⟩ · 𝑆 (𝑒𝑖 )

 = 𝑛∑︁
𝑖=1
|⟨𝑣, 𝑒𝑖⟩| .

At the same time,

∥𝑣 ∥ =
 𝑛∑︁
𝑖=1
⟨𝑣, 𝑒𝑖⟩ · 𝑒𝑖

 = 𝑛∑︁
𝑖=1
|⟨𝑣, 𝑒𝑖⟩|

also, so 𝑆 is an isometry by definition.

“Only if” direction. Now suppose instead that 𝑆 is an isometry. Then,〈
𝑆 (𝑒𝑖 ), 𝑆 (𝑒 𝑗 )

〉
=

〈
(𝑆∗𝑆) (𝑒𝑖 ), 𝑒 𝑗

〉
=

〈
𝑒𝑖 , 𝑒 𝑗

〉
= 𝛿𝑖, 𝑗 ,

so 𝑆 (𝑒1), · · · , 𝑆 (𝑒𝑛) is an orthonormal list long enough to be a basis. □
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