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1 Preliminaries

1.1 Notation

The sets Z,Q,R,C will denote the integers, the rationals, the reals, and the complex numbers respectively. An asterisk
removes 0 from the set; that is, Z∗ = Z\{0}, Q∗ = Q\{0}, R∗ = R\{0}, C∗ = C\{0}.

For 𝑛 ∈ Z>0, we denote with Z𝑛 the set of integers {0, · · · , 𝑛 − 1}, the integers modulo 𝑛. Two integers 𝑎, 𝑏 ∈ Z are said to
be congruent modulo 𝑛 if 𝑛 | (𝑎 − 𝑏); that is, 𝑛 divides (𝑎 − 𝑏), denoted as 𝑎 ≡ 𝑏 (mod 𝑛). This is defines an equivalence
relation on Z with 𝑛 equivalence classes, corresponding to the elements of Z𝑛 .

We denote addition and multiplication modulo 𝑛 by +𝑛 and ×𝑛 respectively. Every 𝑎 ∈ Z𝑛 has a unique additive inverse
𝑛 − 𝑎 when 𝑎 ≠ 0 and 0 otherwise. When 𝑎 and 𝑛 are coprime, 𝑎 has a unique multiplicative inverse according to Bézout’s
identity.

1.2 Binary Operations

The first structures we encounter are sets endowed with a binary operations. We formalize this idea as follows.

Definition 1.1. A binary operation over a set 𝑆 is a map ∗ : 𝑆 × 𝑆 → 𝑆 . A binary operation is sometimes denoted as the
pair (𝑆, ∗) for clarity. We commonly write in infix notation 𝑎 ∗ 𝑏 instead of ∗(𝑎, 𝑏) for 𝑎, 𝑏 ∈ 𝑆 .

When we consider subsets 𝑇 ⊆ 𝑆 that have a common structure, it becomes necessary to ensure that the restriction ∗|𝑇×𝑇
maps to 𝑇 . This motivates the definition of the closure property.

Definition 1.2. Let (𝑆, ∗) be a binary operation. A subset𝑇 ⊆ 𝑆 is said to be closed under ∗, or simply ∗-closed, if the image
𝑇 ∗𝑇 remains a subset of𝑇 . This means the restriction ∗|𝑇×𝑇 is also a binary operation over𝑇 , which we commonly denote
(𝑇, ∗) ⊆ (𝑆, ∗).

For instance, (Z, +) is a binary operation and the subset 3Z B {3𝑛 | 𝑛 ∈ Z} is closed under +.

We now define notions of commutativity and associativity.

Definition 1.3. A binary operation (𝑆, ∗) is said to be commutative if 𝑎 ∗𝑏 = 𝑏 ∗𝑎 for all 𝑎, 𝑏 ∈ 𝑆 . A binary operation (𝑆, ∗)
is said to be associative if (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ 𝑆 .

An important fact is that function composition is always associative. Indeed, given 𝑓 : 𝐶 → 𝐷 , 𝑔 : 𝐵 → 𝐶 , and ℎ : 𝐴 → 𝐵,
we have

(𝑓 ◦ (𝑔 ◦ ℎ)) (𝑥) = 𝑓 ((𝑔 ◦ ℎ) (𝑥)) = 𝑓 (𝑔(ℎ(𝑥))),
((𝑓 ◦ 𝑔) ◦ ℎ) (𝑥) = (𝑓 ◦ 𝑔) (ℎ(𝑥)) = 𝑓 (𝑔(ℎ(𝑥))).

The two always agree, which by definition means that ◦ is associative. Of course, the class of all functions is not a set, but
the notion of associativity still applies.
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Definition 1.4. An element 𝑒 ∈ 𝑆 of a binary operation (𝑆, ∗) is said to be an identity if 𝑒 ∗ 𝑎 = 𝑎 ∗ 𝑒 = 𝑎 for all 𝑎 ∈ 𝑆 .

An immediate result of any binary operation, without any additional structure, is that the identity is unique whenever it
exists.

Lemma 1.5. A binary operation (𝑆, ∗) has at most one identity.

Proof. Suppose 𝑒1, 𝑒2 ∈ 𝑆 are both identities. Then, 𝑒2 = 𝑒1 ∗ 𝑒2 = 𝑒1. □

Definition 1.6. Let (𝑆, ∗) be a binary operation with identity 𝑒 ∈ 𝑆 . An element 𝑎′ ∈ 𝑆 is said to be an inverse of 𝑎 ∈ 𝑆 if
𝑎′ ∗ 𝑎 = 𝑎 ∗ 𝑎′ = 𝑒 .

An inverse may not exist: 0 ∈ (R,×) does not have an inverse even though 1 ∈ (R,×) is an identity. The uniqueness of an
inverse is not guaranteed, but it is hard to show. Any associative binary operation admitting an inverse will always have
at most one inverse for any element: if 𝑎′, 𝑎′′ ∈ 𝑆 are both inverses of 𝑎 ∈ 𝑆 , then 𝑎′ = 𝑎′ ∗ 𝑒 = 𝑎′ ∗ 𝑎 ∗ 𝑎′′ = 𝑒 ∗ 𝑎′′ = 𝑎′′.
However, a non-associative binary operation can be hard to construct.

2 Groups and Subgroups

2.1 Groups

A group is, in many ways, the largest family of algebraic structures of interest. It requires very few conditions, which we
spell out as follows.

Definition 2.1. A group (𝐺, ∗) is a binary operation with the following properties:

• ∗ is associative;

• ∗ admits an identity 𝑒 ∈ 𝐺 ;

• Every element of 𝐺 has an inverse.

A first prototypical example is (Z𝑛, +𝑛) for 𝑛 ∈ Z𝑛>0. The identity is 0, and the inverse of 𝑎 is simply 𝑛 − 𝑎. Some other
examples include (Q∗,×), (C, +), and ({𝑧 ∈ C : |𝑧 | = 1},×). These are all examples where the operation commutes, which
we now define.

Definition 2.2. A group (𝐺, ∗) is said to be abelian or commutative if ∗ is commutative over𝐺 ; that is, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 for all
𝑎, 𝑏 ∈ 𝐺 .

An example of a non-abelian group is GL𝑛 (R), the set of 𝑛 × 𝑛 matrices over R with a non-zero determinant, under the
operation of matrix multiplication. The closure property follows from |𝐴𝐵 | = |𝐴| · |𝐵 | and the identity is 𝐼 with the inverse
being the matrix inverse. However, the non-commutativity of matrix multiplication is a fact from linear algebra which
makes the group non-abelian.

Note that the closure property above is not trivial: it is baked into the definition of a binary operator that ∗ : 𝐺 ×𝐺 → 𝐺 .
Checking that the range is within 𝐺 is necessary in most cases. For a non-example, (Z+, +) is not group since it has no
identity.

In most problems, it is helpful to use the GL group as an example to visualize how things work. Integers modulo 𝑛 are also
an excellent choice, though it is abelian and hence not as general.

Two important results concern the uniqueness of the identity and of the inverse, which follow immediately from the defi-
nition. It is not trivial that we demonstrate these results as we use them implicitly almost all the time.

We first state the uniqueness of the group identity, which is a corollary of the uniqueness of the identity of any binary
operation.
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Proposition 2.3 (Uniqueness of Group Identity). Suppose (𝐺, ∗) is a group. Then, there exists a unique identity 𝑒 ∈ 𝐺 that
satisfies the definition. We hereafter reserve this notation to denote the identity of a group.

Proof. By Lemma 1.5, there exists a unique 𝑒 ∈ 𝐺 such that 𝑒 ∗ 𝑎 = 𝑎 ∗ 𝑒 = 𝑎 for all 𝑎 ∈ 𝐺 . This must then be the only choice
of 𝑒 in the definition, which is guaranteed to exist. □

Proposition 2.4 (Uniqueness of Group Element Inverse). Suppose (𝐺, ∗) in a group and 𝑎 ∈ 𝐺 . Then, there exists a unique
𝑎′ ∈ 𝐺 such that 𝑎′ ∗ 𝑎 = 𝑎 ∗ 𝑎′ = 𝑒 . We hereafter reserve this notation to denote the inverse of a group element.

Proof. Suppose 𝑎′, 𝑎′′ ∈ 𝐺 are both inverses of 𝑎. Then,

𝑎′ = 𝑎′ ∗ 𝑒 = 𝑎′ ∗ 𝑎 ∗ 𝑎′′ = 𝑒 ∗ 𝑎′′ = 𝑎′′ .

Hence 𝑎 admits at most one inverse. The existence of such an 𝑎 is from the definition, which then must be unique. □

A corollary is a formula for the inverse of a product, which is a more general form of (𝐴𝐵)−1 = 𝐵−1𝐴−1 from matrices.

Corollary 2.5. Suppose (𝐺, ∗) is a group and 𝑎, 𝑏 ∈ 𝐺 . Then, (𝑎 ∗ 𝑏)′ = 𝑏′ ∗ 𝑎′.

Proof. Because 𝑏′ ∗ 𝑎′ ∗ 𝑎 ∗ 𝑏 = 𝑏′ ∗ 𝑒 ∗ 𝑏 = 𝑒 and 𝑎 ∗ 𝑏 ∗ 𝑏′ ∗ 𝑎′ = 𝑎 ∗ 𝑒 ∗ 𝑎′ = 𝑒 , 𝑏′ ∗ 𝑎′ is an inverse of 𝑎 ∗ 𝑏. The uniqueness
of the inverse then guarantees that 𝑏′ ∗ 𝑎′ is this inverse. □

We first state the first result on groups, the cancellation laws.

Proposition 2.6 (Left and Right Cancellation Laws). Suppose (𝐺, ∗) is a group. Then, for all 𝑎, 𝑏, 𝑐 ∈ 𝐺 , 𝑎 ∗𝑏 = 𝑎 ∗ 𝑐 implies
𝑏 = 𝑐 and 𝑏 ∗ 𝑎 = 𝑐 ∗ 𝑎 implies 𝑏 = 𝑐 .

Proof. First, suppose 𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐 . Then, 𝑎′ ∗ 𝑎 ∗ 𝑏 = 𝑎′ ∗ 𝑎 ∗ 𝑐 , which implies 𝑏 = 𝑐 . If instead 𝑏 ∗ 𝑎 = 𝑐 ∗ 𝑎, we similarly have
𝑏 ∗ 𝑎 ∗ 𝑎′ = 𝑐 ∗ 𝑎 ∗ 𝑎′, which also implies 𝑏 = 𝑐 . □

A corollary is that we can solve all equations like 4 ∗ 𝑥 = 2 or 𝑥 ∗ 5 = 2.

Corollary 2.7. Suppose (𝐺, ∗) is a group. Given 𝑎, 𝑏 ∈ 𝐺 , the equations 𝑎 ∗ 𝑥 = 𝑏 and 𝑥 ∗ 𝑎 = 𝑏 have unique solutions in
𝑥 ∈ 𝐺 , which are 𝑥 = 𝑎′ ∗ 𝑏 and 𝑥 = 𝑏 ∗ 𝑎′ respectively.

Proof. We first consider 𝑎 ∗ 𝑥 = 𝑏. Note that if 𝑥 = 𝑎′ ∗𝑏, then 𝑎 ∗ 𝑥 = 𝑎 ∗𝑎′ ∗𝑏 = 𝑏 indeed. For the other direction, applying
the cancellation law (Proposition 2.6) to 𝑎 ∗ 𝑥 = 𝑎 ∗ 𝑎′ ∗ 𝑏 implies 𝑥 = 𝑎′ ∗ 𝑏, which we have shown is a valid solution. The
same argument follows for 𝑥 ∗ 𝑎 = 𝑏 ⇐⇒ 𝑥 = 𝑏 ∗ 𝑎′. □

We will now turn to two specific examples: 𝐺1 = (Z2, +2) and 𝐺2 = ({1,−1},×). The tables are as follows.

+2 0 1
0 0 1
1 1 0

Table 1: The table for 𝐺1

× 1 -1
1 1 -1
-1 -1 1

Table 2: The table for 𝐺2

Note that Tables 1 and 2 are identical if we swap 0, 1 from𝐺1 with 1,−1 from𝐺2 in that order: the group operations are the
same. What that means is that they’re essentially the same group, just with elements renamed. This allows us to introduce
the concept of isomorphisms, which formalizes this idea.
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Definition 2.8. Two groups (𝐺1, ∗1) and (𝐺2, ∗2) are said to be isomorphic, denoted as (𝐺1, ∗1) ≃ (𝐺2, ∗2), if there exists a
bijective mapping 𝑓 : 𝐺1 → 𝐺2 such that 𝑓 (𝑎) ∗2 𝑓 (𝑏) = 𝑓 (𝑎 ∗1 𝑏) for all 𝑎, 𝑏 ∈ 𝐺 . Such an 𝑓 is called a group isomorphism
of 𝐺1 and 𝐺2.

This is an equivalence relation: it is reflexive with 𝑓 = 𝜄, symmetric with 𝑓 ↔ 𝑓 −1, and transitive with 𝑓2 ◦ 𝑓1.

We will show that Z and 2Z = {2𝑛 | 𝑛 ∈ Z} are isomorphic under +. Consider 𝑓 : Z → 2Z, 𝑛 ↦→ 2𝑛, which is indeed a
bijection. For 𝑎, 𝑏 ∈ Z,

𝑓 (𝑎) + 𝑓 (𝑏) = 2𝑎 + 2𝑏 = 2(𝑎 + 𝑏) = 𝑓 (𝑎 + 𝑏).

Therefore, (Z, +) ≃ (2Z, +).

All groups with exactly 1 element are isomorphic; so are all groups with exactly 2 and all groups with exactly 3 ele-
ments.

2.2 Abelian Examples

Our first abelian example is (Z𝑛, +𝑛) for 𝑛 ∈ Z>0, the integers modulo 𝑛 with modular addition. Specifically, (Z4, +4) has
the following table.

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table 3: The table for (Z4, +4).

We now consider its real counterpart, (R𝑐 , +𝑐), the reals modulo 𝑐 ∈ R>0. The set R𝑐 is defined as the interval [0, 𝑐) with
addition

𝑎 +𝑐 𝑏 =

{
𝑎 + 𝑏, if 𝑎 + 𝑏 < 𝑐,

𝑎 + 𝑏 − 𝑐, if 𝑎 + 𝑏 ≥ 𝑐.

Clearly, the operation is closed in R𝑐 , it is commutative, the identity is 0 and the inverse of 𝑎 is 0 when 𝑎 = 0 and 𝑐 − 𝑎
otherwise. Associativity can be seen manually, though we defer the proof later after the circle group is introduced.

The next example is 𝑈 = {𝑧 ∈ 𝐶 : |𝑧 | = 1}, the complex unit circle. This is made into a group with the multiplication × on
C. The closure property follows from |𝑤𝑧 | = |𝑤 | · |𝑧 |, the identity is 1, and the inverse is complex conjugation.

An interesting fact is that 𝑈 is isomorphic to R𝑐 . To see this, we first show that any R𝑐 is isomorphic to any R𝑑 for
𝑐, 𝑑 ∈ R>0.

Proposition 2.9. For any 𝑐, 𝑑 ∈ R>0, (R𝑐 , +𝑐 ) ≃ (R𝑑 , +𝑑 ).

Proof. Define 𝑓 : R𝑐 → R𝑑 , 𝑥 ↦→ 𝑥/𝑐 · 𝑑 , which is clearly a bijection. For any 𝑎, 𝑏 ∈ R𝑐 , we have

𝑓 (𝑎) +𝑑 𝑓 (𝑏) =
{
𝑎/𝑐 · 𝑑 + 𝑏/𝑐 · 𝑑, if 𝑎/𝑐 · 𝑑 + 𝑏/𝑐 · 𝑑 < 𝑑,

𝑎/𝑐 · 𝑑 + 𝑏/𝑐 · 𝑑 − 𝑑, otherwise

=

{
(𝑎 + 𝑏)/𝑐 · 𝑑, if 𝑎 + 𝑏 < 𝑐,

(𝑎 + 𝑏)/𝑐 · 𝑑 − 𝑑, otherwise

=

({
𝑎 + 𝑏, if 𝑎 + 𝑏 < 𝑐,

𝑎 + 𝑏 − 𝑐, otherwise

) /
𝑐 · 𝑑

= 𝑓 (𝑎 +𝑐 𝑏).

Hence, (R𝑐 , +𝑐 ) ≃ (R𝑑 , +𝑑 ). □
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We now show that𝑈 ≃ R2𝜋 , which then shows the intended by transitivity.

Proposition 2.10. R2𝜋 ≃ 𝑈 .

Proof. Define 𝑓 : R2𝜋 → 𝑈 , 𝜃 ↦→ e𝑖𝜃 , which is clearly a bijection. For any 𝜃, 𝜙 ∈ R2𝜋 , we have

𝑓 (𝜃 ) · 𝑓 (𝜙) = e𝑖𝜃 · e𝑖𝜙 = e𝑖 (𝜃+𝜙 ) = e𝑖 (𝜃+2𝜋𝜙 ) = 𝑓 (𝜃 +2𝜋 𝜙),

which shows R2𝜋 ≃ 𝑈 . □

Our last example is 𝑈𝑛 = {𝑧 ∈ C : 𝑧𝑛 = 1} = {e2𝜋𝑖/𝑛 | 𝑛 ∈ Z𝑛} for 𝑛 ∈ Z>0, with the multiplication operator. This definition
alone suffices to show that𝑈𝑛 ≃ Z𝑛 .

2.3 Non-Abelian Examples

Hereafter, we may omit the group operation by writing 𝑎𝑏 instead of 𝑎 ∗ 𝑏. The inverse of an element 𝑎 ∈ 𝐺 is also denoted
as 𝑎′. We also define 𝑎𝑛 for 𝑛 ∈ Z by

𝑎𝑛 B


𝑛 copies︷︸︸︷
𝑎 · · ·𝑎, if 𝑛 > 0,
𝑒, if 𝑛 = 0,
(𝑎−1)𝑛 = (𝑎𝑛)−1, if 𝑛 < 0.

We often refer to the number of elements of a group, which we give a special name.

Definition 2.11. Suppose (𝐺, ∗) is a group. Then, the order of 𝐺 is the cardinality of 𝐺 , denoted as |𝐺 |.

We will now turn to an elementary investigation on permutations, which are simply shuffling or renaming the letters. For
example

1 ↦→ 2 2 ↦→ 4 3 ↦→ 3 4 ↦→ 2

is a permutation of {1, 2, 3, 4}.

Definition 2.12. A permutation of a set 𝐴 is a bijection from 𝐴 to 𝐴. The collection of all permutations of 𝐴 is denoted as
𝑆𝐴.

Because the composition of bijections is a bijection, we have a way to “chain” permutations.

Definition 2.13. Suppose 𝜎, 𝜏 ∈ 𝑆𝐴 are permutations of 𝐴. Then, the composition or multiplication of 𝜎 and 𝜏 , denoted as
𝜎 ◦ 𝜏 or simply 𝜎𝜏 , is the permutation 𝜎 ◦ 𝜏 .

In a standard notation, we write the example above instead with a 2 × 𝑛 array where the first row is the elements and the
second row is where each element goes to: (

1 2 3 4
2 4 3 2

)
.

Recall that compositions merge from the right. This gives an easy way to compute the composition of permutations. For
instance, (

1 2 3 4 5
4 2 5 3 1

) (
1 2 3 4 5
3 5 4 2 1

)
=

(
1 2 3 4 5
5 1 3 2 4

)
.

We can write out the top row of the RHS, which is 1, · · · , 5. For each bottom entry, simply track where they’d go. 1 ↦→ 3 ↦→ 5,
so we put 5 under 1. Similarly, 2 ↦→ 5 ↦→ 1, so we put 1 under 2. We can check that the bottom row is indeed a permuted
rewriting of the top row to ensure our calculation was correct.

These results suggest a nice structure of permutations under compositions, which we show is a group.

Theorem 2.14. Let 𝐴 be a nonempty set. Then, (𝑆𝐴, ◦) is a group.
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Proof. First, bijections are closed under function composition, so 𝑆𝐴 is closed under ◦. Further, composition is also associa-
tive. The identity map 𝜄 : 𝐴→ 𝐴, 𝑎 ↦→ 𝑎 is indeed a permutation, which is an identity for the group because 𝜄𝜎 = 𝜎𝜄 = 𝜎 for
all 𝜎 ∈ 𝑆𝐴. Lastly, the function inverse 𝜎−1 exists for each 𝜎 ∈ 𝑆𝐴 and 𝜎−1𝜎 = 𝜎𝜎−1 = 𝜄, so this is also the group inverse. □

Note that the permutation group cares only about the set size: 𝑆𝐴 = 𝑆𝐵 if |𝐴| = |𝐵 |. We will therefore use canonically
{1, · · · , 𝑛} for 𝐴.

Definition 2.15. Let 𝑛 ∈ Z>0 and let 𝐴 = {1, · · · , 𝑛}. The symmetry group on 𝑛 letters, denoted as 𝑆𝑛 , is defined as the
group 𝑆𝐴 of permutations of 𝐴.

Note that 𝐴 may be infinite but 𝑛 is finite for our investigation. Elementary combinatorics implies that |𝑆𝑛 | = 𝑛!.

In general, 𝑆𝑛 is not an abelian group! For 𝜎 =

(
1 2 3
2 1 3

)
and 𝜏 =

(
1 2 3
1 3 2

)
, we have

𝜎𝜏 =

(
1 2 3
2 3 1

)
≠ 𝜏𝜎 =

(
1 2 3
3 1 2

)
.

An interesting result is that any group with at most four elements is abelian. Later, we will see that Z5 is the only group of
order 5 up to isomorphism, which is abelian. Importantly, 𝑆3 is the smallest non-abelian group.

We now turn to a more compact way to specify a permutation, called the disjoint cycle notation. For example, consider

𝜎 =

(
1 2 3 4 5 6
3 4 6 2 5 1

)
. In this notation, we begin by writing “(1,”. With 𝜎 (1) = 3, we will add a 3 to arrive at “(1, 3,”.

Finally, 𝜎 (3) = 6, so we have “(1, 3, 6”. Because 𝜎 (6) = 1 goes back to the start, we will close the parentheses to get to
“(1, 3, 6)”. We call this a cycle since we shift each element according to this cycle.

We haven’t mentioned 2 and 4 yet, for which we need a new pair of parentheses. We opt for the smaller 2 first, so we have
“(1, 3, 6) (2,”. Because 𝜎 (2) = 4, we put 4 and since 𝜎 (4) = 2, we will close the parentheses for the final output (1, 3, 6) (2, 4).
A pigeonhole argument can be applied inductively to show that every permutation can be put into this form.

Sometimes we have a parentheses of a singleton. For example,
(
1 2 3
3 2 1

)
will have (1, 3) (2). Because parentheses of a

singleton is equivalent to not doing anything, we may omit them. This allows us to view (1, 3) as a permutation in its own
right, where unspecified elements will not change.

Definition 2.16. A 𝑘-cycle in 𝑆𝑛 , where 1 ≤ 𝑘 ≤ 𝑛, is a sequence of 𝑘 elements (𝑎0, · · · , 𝑎𝑘−1) that represents a permutation
𝜎 ∈ 𝑆𝑛 by

𝜎 (𝑎) =
{
𝑎 (𝑖+1) mod 𝑘 , if 𝑎 = 𝑞𝑖 for some 𝑖 ∈ {0, · · · , 𝑛 − 1},
𝑎 otherwise.

This means we can view (1, 3, 6) (2, 4) as a product of a 3-cycle and a 2-cycle. Indeed, because a number appears at most
once in the disjoint cycle notation, at most one factor in the product will map to its input to a different number, exactly how
the notation is to be interpreted.

Definition 2.17. The disjoint cycle notation of a permutation 𝜎 is the formal product of a sequence of cycles where no
number is repeated such that the product evaluates to 𝜎 .

We provide a canonical (unique) way of writing the disjoint cycle notation of any permutation, where we’ll always begin
with the smallest unused number, defined as follows.

We’ll use the shorthand [𝑛] B {1, · · · , 𝑛}. Given a permutation 𝜎 ∈ 𝑆𝑛 , where 𝑛 ∈ Z>0,

• Initialize prev← ∅ and out← 𝜄;

• While prev ≠ [𝑛]:
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– Let 𝑖 ← min[𝑛]\prev;

– Redefine out← out · (𝑖, 𝜎 (𝑖), · · · , 𝜎𝑘−1 (𝑖)), where 𝑘 ← min{𝑘 > 0 | 𝜎𝑘 (𝑖) = 𝑖};

– Update prev← prev ∪ {𝑖, · · · , 𝜎𝑘 (𝑖)};

• Return out;

Proposition 2.18. Every permutation 𝜎 ∈ 𝑆𝑛 can written uniquely in the canonical disjoint cycle notation.

Proof. Within the while loop, because prev ⊊ [𝑛], we have [𝑛]\prev ≠ ∅, so its minimum 𝑖 exists. Subsequently, note
that the mate Z≥0 → [𝑛] by 𝑝 ↦→ 𝜎𝑝 (𝑖) cannot be injective as its domain has strictly larger cardinality than its codomain.
Therefore, 𝜎𝑠 (𝑖) = 𝜎𝑡 (𝑖) for some 𝑠 > 𝑡 ≥ 0. This means 𝜎𝑠−𝑡 (𝑖) = 𝜄 (𝑖) = 𝑖 by the cancellation law of the group 𝑆𝑛
(Proposition 2.6), where 𝑠 − 𝑡 > 0. Such a minimal 𝑘 = 𝑠 − 𝑡 then also exists. As 𝑘 > 0, each execution of while loop will
create a cycle of length at least 1, and thus increments |prev| by at least 𝑘 + 1 = 1. Therefore, the loop cannot be executed
more than 𝑛 times. The algorithm has been shown to terminate without error.

To show the correctness of the algorithm, observe that each iteration of the loop creates a 𝑘-cycle (𝑖, · · · , 𝜎𝑘−1 (𝑖)). We
claim that these cycles are disjoint; that is, no two of the cycles contain any shared elements. Suppose the contrary that
𝜎𝑝1 (𝑖1) = 𝜎𝑝2 (𝑖2), where 0 ≤ 𝑝1 < 𝑘1 and 0 ≤ 𝑝2 < 𝑘2 correspond to the 𝑘1- and 𝑘2-cycles starting with 𝑖1 and 𝑖2 respectively.
We will assume without loss of generality that 𝑖1 < 𝑖2; that is, the 𝑘1-cycle is considered by the algorithm before the 𝑘2-cycle.
Note that 𝜎𝑘2−𝑝2 (𝜎𝑝2 (𝑖2)) = 𝑖2. Then, 𝑖2 = 𝜎𝑘2−𝑝2 (𝜎𝑝1 (𝑖1)) = 𝜎 (𝑘2−𝑝2+𝑝1 ) mod 𝑘1 (𝑖1), which is a contradiction since 𝑖2 ∉ prev

by the time the 𝑘2-cycle is considered. Now, to show that the product of cycles in out agrees with 𝜎 , observe that if 𝑥 ∈ [𝑛],
then 𝑥 exists in exactly one cycle starting with some 𝑖 ∈ [𝑛], and 𝑥 = 𝜎𝑝 (𝑖). All other factors can be ignored as applying
them does not modify 𝑖 . Let 𝑘 > 0 be the length of this cycle. Then, by construction, 𝜎 (𝑖) = 𝜎𝑝+𝑘1 (𝑖), so the output of the
𝑘-cycle—and thus of the disjoint cycles—agrees with the evaluation of 𝜎 . □

The example above provides a procedure that turns a permutation into the disjoint cycle notation. We will omit a formal
argument because it is mostly technical. A note is that disjoint cycles commute but cycles in general do not.

Lastly, a benefit of the disjoint cycle notation is the ease of taking inverses: (1, 4, 3, 5)−1 = (5, 3, 4, 1)—just write the sequence
inside in reverse.

Our next topic of investigation is the dihedral group, a subgroup of symmetries on the vertices of an 𝑛-gon.

Definition 2.19. Suppose 𝑛 ∈ Z≥3. Define 𝑃𝑛 = Z𝑛 as vertices e2𝜋𝑝/𝑛 ∈ C on the complex unit circle for each 𝑝 ∈ 𝑃𝑛 . 𝑃𝑛 is
made into a simple undirected graph where the set of edges is 𝐸 = {{𝑝, (𝑝 + 1) mod 𝑛} | 𝑝 ∈ 𝑃𝑛}.

This allows us to fix a positioning and labeling of the polygon:

Figure 1: The regular polygons 𝑃3 and 𝑃4, where 0 always lies on 1 + 0𝑖 .

We define the dihedral group 𝐷𝑛 as the permutation of 𝑃𝑛 that preserves the edges.

Definition 2.20. Let 𝑛 ∈ Z≥3. The dihedral group 𝐷𝑛 is defined as the collection of all permutations 𝜎 on 𝑃𝑛 such that
{𝑖, 𝑗} ∈ 𝐸 ⇐⇒ {𝜎 (𝑖), 𝜎 ( 𝑗)} ∈ 𝐸 for all 𝑖, 𝑗 ∈ 𝑃𝑛 , where 𝐸 is the set of edges of 𝑃𝑛 .
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Just because we say that its a group doesn’t mean it actually is!

Theorem 2.21. The dihedral group 𝐷𝑛 with composition is a group for all 𝑛 ∈ Z≥3.

Proof. We first demonstrate closure. Suppose 𝜎, 𝜏 ∈ 𝐷𝑛 . Then, for all 𝑖, 𝑗 ∈ 𝑃𝑛 ,

{𝑖, 𝑗} ∈ 𝐸 ⇐⇒ {𝜏 (𝑖), 𝜏 ( 𝑗)} ∈ 𝐸 ⇐⇒ {𝜎 (𝜏 (𝑖)), 𝜎 (𝜏 ( 𝑗))} ∈ 𝐸.

Thus, 𝜎𝜏 ∈ 𝐷𝑛 .

The associativity of the group operation is from function composition. Clearly, the identity map 𝜄 is in the dihedral group
and serves as the identity because 𝜄𝜎 = 𝜎𝜄 = 𝜎 for all 𝜎 ∈ 𝐷𝑛 . Finally, the permutation inverse is the group inverse. It is
obvious that 𝜎−1𝜎 = 𝜎𝜎−1 = 𝜄. It remains to show that the permutation inverse is a group element. Indeed, for any 𝐼 , 𝐽 ∈ 𝐷𝑛 ,
by setting 𝑖 = 𝜎−1 (𝐼 ) and 𝑗 = 𝜎−1 (𝐽 ), we have

{𝜎−1 (𝐼 ), 𝜎−1 (𝐽 )} ∈ 𝐸 ⇐⇒ {𝜎 (𝜎−1 (𝐼 )), 𝜎 (𝜎−1 (𝐽 ))} ∈ 𝐸 ⇐⇒ {𝐼 , 𝐽 } ∈ 𝐸.

The proof is now complete. □

We define two basic elements in 𝐷𝑛 .

Definition 2.22. Let 𝑛 ∈ Z≥3. Define 𝜌 ∈ 𝐷𝑛 by 𝜌 (𝑘) B (𝑘 + 1) mod 𝑛, which rotates the 𝑛-gon by 2𝜋/𝑛 radians.

Because (𝑃𝑛, +𝑛) = (Z𝑛, +𝑛) is a group, the modular addition in 𝜌 must be cancelable, so 𝜌 is bijective. Further, by the
definition of 𝐸, {𝑖, 𝑗} ∈ 𝐸 ⇐⇒ {𝑖 +𝑛 1, 𝑗 +𝑛 1} ∈ 𝐸 ⇐⇒ {𝜌 (𝑖), 𝜌 ( 𝑗)} ∈ 𝐸, so 𝜌 ∈ 𝐷𝑛 .

The other element flips the 𝑛-gon with respect to the 𝑥-axis.

Definition 2.23. Let 𝑛 ∈ Z≥3. Define 𝜇 ∈ 𝐷𝑛 by 𝜇 (𝑘) B (−𝑘) mod 𝑛, which flips vertices vertically.

The dihedral group is not abelian by just considering these two elements:

(𝜇𝜌) (0) = 𝜇 (1) = 𝑛 − 1 ≠ (𝜌𝜇) (0) = 𝜌 (0) = 1.

So from definition, we know that 𝐷𝑛 ⊆ 𝑆𝑛 . But what does it consist of? The following statement shows that 𝐷𝑛 is simply
“generated” 𝜌 and 𝜇.

Proposition 2.24. Let 𝑛 ∈ Z≥ 3. Then, |𝐷𝑛 | = 2𝑛 and

𝐷𝑛 = {𝜄, 𝜌, · · · , 𝜌𝑛−1, 𝜇, 𝜇𝜌, · · · , 𝜇𝜌𝑛−1}.

Proof. Note that any 𝜎 ∈ 𝐷𝑛 will map 𝑃𝑛 to 𝑃𝑛 . First, consider 𝜎 (0), of which there are 𝑛 possibilities free in 𝑃𝑛 . Because
{0, 1} ∈ 𝐸, we must have {𝜎 (0), 𝜎 (1)} ∈ 𝐸. By construction of the graph/polygon, this means 𝜎 (1) is either 𝜎 (0) +𝑛 1 or
𝜎 (0) −𝑛 1. Now, there will be only one possibility for where to map any other vertices 2, · · · , 𝑛. So |𝐷𝑛 | ≤ 2𝑛.

Now, we show that {𝜄, 𝜌, · · · , 𝜌𝑛−1, 𝜇, 𝜇𝜌, · · · , 𝜇𝜌𝑛−1} ⊆ 𝐷𝑛 are distinct. There are three possibilities.

• If we choose two from the first half, then they can’t be equal. Note that 𝜌𝑖 (0) = 𝑖 and 𝜌 𝑗 (0) = 𝑗 for 𝑖, 𝑗 ∈ 𝑃𝑛 , so 𝑖 ≠ 𝑗

implies 𝜌𝑖 ≠ 𝜌 𝑗 ;

• If we choose two from the second half, then they can’t be equal either. We can cancel 𝜇 because 𝜇 is a group element.
They same argument as the first item ensues;

• Lastly, if we choose one from each half by taking 𝜌𝑖 and 𝜇𝜌 𝑗 where 𝑖, 𝑗 ∈ 𝑃𝑛 . Note that 𝜌𝑖 (0), · · · , 𝜌𝑖 (𝑛 − 1) are in a
counterclockwise order on 𝑃𝑛 whereas 𝜇𝜌 𝑗 (0), · · · , 𝜇𝜌 𝑗 (𝑛 − 1) are clockwise. This means the functions 𝜌𝑖 ≠ 𝜇𝜌 𝑗 .

Therefore, 𝐷𝑛 has size at most 2𝑛, and we have found 2𝑛 distinct elements which must encompass all of 𝐷𝑛 . The proof is
now complete. □
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Some useful facts are as follows:

• 𝜌𝑖 = 𝜌𝑖 mod 𝑛 ;

• 𝜇2 = 𝜄;

• 𝜇𝜌𝑖 = 𝜌−𝑖𝜇.

2.4 Subgroups

We have just seen how 𝐷𝑛 is a subset of 𝑆𝑛 and is a group in its own right. We should expect this inclusion to provide
additional structure that allows us to quantify how they interact. We formalize this notation with the concept of sub-
groups.

Definition 2.25. Let (𝐺, ∗) be a group. A subset𝐻 ⊆ 𝐺 is said to be a subgroup, denoted as𝐻 ≤ 𝐺 , if (𝐻, ∗|𝐻×𝐻 ) is a group.

This succinct definition entails a couple things, actually:

• First, 𝐻 must be closed under ∗. If 𝑎 ∗ 𝑏 ∉ 𝐻 for some 𝑎, 𝑏 ∈ 𝐻 , then ∗ would not even be a well-defined binary
operation on 𝐻 to begin with;

• It must include the identity. For example, Z>0 ⊂ (Z, +) is closed under +, but it isn’t a (sub)group since it doesn’t have
an identity;

• It must include all the inverses of elements of 𝐻 . Another similar example is Z≥0 ⊆ (Z, +). It is closed under + and
has an identity. But no positive integer here has an additive inverse: it is not a group.

It turns out there are so many things to consider when we simply want to decide if a subset matches the definition of a
subgroup. Are there easier characterizations? We answer this question with the following useful facts.

Proposition 2.26. Let (𝐺, ∗) be a group. A non-empty subset 𝐻 ⊆ 𝐺 is a subgroup of 𝐺 if and only if 𝐻 is closed under ∗
and taking the inverse; that is, 𝑎 ∗ 𝑏 ∈ 𝐻 and 𝑎−1

𝐺
∈ 𝐻 for all 𝑎, 𝑏 ∈ 𝐻 .

One thing to note, before we prove this, is that the identity of 𝐻 must be inherited from 𝐺 . As groups, 𝐻 and 𝐺 both have
an identity unique to itself. Because 𝐻 ⊆ 𝐺 , this means that 𝐺 ’s identity is also 𝐻 ’s identity by restriction. Similarly, the
inverse argument is the same. The notation 𝑎−1

𝐺
means that we’re referring to the inverse of 𝑎−1 in𝐺 , but we’ll see that it’s

the same in 𝐻 so we don’t need this extra notation.

Proof. The⇒ direction is evident. For the other direction, the closure property implies that ∗ is a binary operation on 𝐻
after restriction, and associativity is preserved under this restriction. Let 𝑎, 𝑏 ∈ 𝐺 be arbitrary. Because 𝑎 ∈ 𝐻 and 𝑎−1

𝐺
∈ 𝐻 ,

𝑒𝐺 = 𝑎 ∗ 𝑎−1
𝐺
∈ 𝐻 . Because 𝑒𝐺 ∗ 𝑎 = 𝑎 ∗ 𝑒𝐺 = 𝑎, 𝑒𝐺 is an identity of 𝐻 . Therefore, (𝐻, ∗|𝐻×𝐻 ) is a group, so 𝐻 ≤ 𝐺 . □

For finite groups, it turns out we can even remove the requirement that the inverse exists. This is obviously not true in gen-
eral for infinite groups, like the example Z>0 ̸≤ Z under addition. But the finitude allows us to apply a pigeonhole argument
that solve this problem. We’ll basically prove the pigeonhole principle along the way to make every step clear.

Proposition 2.27. Let (𝐺, ∗) be a group and suppose 𝐻 ⊆ 𝐺 is non-empty and finite. Then, 𝐻 ≤ 𝐺 if and only if 𝐻 is
∗-closed.

Proof. The⇒ direction is obvious. For the⇐ direction, let 𝑛 = |𝐻 | and choose an arbitrary 𝑎 ∈ 𝐻 . Consider the map from
Z+ to 𝐻 by 𝑛 ↦→ 𝑎𝑛 . Because the domain has strictly larger cardinality than the range, the map cannot be injective. Thus,
𝑎𝑖 = 𝑎 𝑗 for some 0 < 𝑖 < 𝑗 . This implies 𝑎 · 𝑎 𝑗−𝑖+1 = 𝑎 𝑗−𝑖+1 · 𝑎 = 𝑒 , so 𝑎−1 = 𝑎 𝑗−𝑖+1 ∈ 𝐻 . By Proposition 2.26, 𝐻 is a subgroup
of 𝐺 . □

Let’s turn to some examples. As we have seen, Z ≤ Q ≤ R ≤ C as additive groups. Another interesting example is consider
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the addition operation on vector spaces. Because 𝐶∞ (R) is a subspace of 𝐶0 (R), we have 𝐶∞ (R) ≤ 𝐶0 (R).

What about finite structures? Z4 has only two proper subgroups, {0, 2} and {0}. But the Klein-4 group, which we denote
as 𝑉 = Z2 × Z2 with component-wise addition of +2, has four: {(0, 0), (0, 1)}, {(0, 0), (1, 0)}, {(0, 0), (1, 1)}, and the trivial
{(0, 0)}.

In our previous proof, we leveraged the finitude of 𝐻 by considering the set of all elements 𝑎, 𝑎2, 𝑎3, · · · . Do they form
a subgroup? Well, they’re clearly closed, and we’ve seen that there’re always inverses—provided that the group is finite.
But what about infinite groups? In (Z, +), we can consider 2, 4, 6, 8, · · · . This is obviously not a group: no inverses are
included!

We can extend our construction so that this is always a group, by considering the following.

Definition 2.28. Suppose 𝐺 is a group and 𝑔 ∈ 𝐺 . For any integer 𝑛 ∈ Z, we define

𝑔𝑛 =


𝑛 copies︷︸︸︷
𝑔 · · ·𝑔, if 𝑛 > 0,
𝑒, if 𝑛 = 0,
(𝑔−1)𝑛 = (𝑔𝑛)−1, if 𝑛 < 0.

The cyclic subgroup of 𝐺 generated by 𝑔, denoted as ⟨𝑔⟩, is defined as the set

{𝑎𝑛 | 𝑛 ∈ Z}.

Let’s show that this is a group, combining our insights from before for a formal argument. Keep in mind that while clo-
sure remains obvious, we need to explicit demonstrate the existence of inverses. As we’ve seen, ⟨𝑔⟩ may be infinite, so
Proposition 2.27 does not apply.

Proposition 2.29. Suppose 𝐺 is a group and 𝑔 ∈ 𝐺 . Then, ⟨𝑔⟩ ≤ 𝐺 .

Proof. Let 𝑔𝑚, 𝑔𝑛 ∈ ⟨𝑔⟩. Then, 𝑔𝑚 · 𝑔𝑛 = 𝑔𝑚+𝑛 ∈ ⟨𝑔⟩. Now, by construction, (𝑔𝑛)−1 = 𝑔−𝑛 ∈ ⟨𝑔⟩. □

In the context of the dihedral group, one can see that ⟨𝜌⟩ = {𝜄, 𝜌, · · · , 𝜌𝑛−1} and ⟨𝜇⟩ = {𝜄, 𝜇}. But note that 𝜌 is not the only
element in 𝐷𝑛 that generates this subgroup. Consider 𝐷5 and ⟨𝜌2⟩, which turns out to be equal to 𝜌! At the same time,
however, ⟨𝜌2⟩ ⪇ ⟨𝜌⟩ in 𝐷4.

2.5 Cyclic Groups

In this section, we’ll get to delve into the interesting structure of cyclic (sub)groups more. We first extend the concept of
cyclicness from subgroups to groups.

Definition 2.30. A group𝐺 is said to be a cyclic group if some element of𝐺 generates𝐺 ; that is, if there exists 𝑔 ∈ 𝐺 such
that ⟨𝑔⟩ = 𝐺 .

For example, Z is cyclic, because ⟨1⟩ = {𝑛 | 𝑛 ∈ Z} = Z, but Q is not since any 𝑔 ∈ 𝐺 means every pair of numbers in ⟨𝑔⟩
is separated apart by at least 𝑔, while this cannot be the case for rationals. Of course, since every cyclic group is at most
countably infinite, any uncountable group like (R, +) or (C∗,×) cannot be cyclic.

Our first result is that cyclic groups are abelian, for the simple reason that powers commute. Think matrices: this is exactly
how we define matrix powers.

Proof. A cyclic group is abelian. □

Proof. Suppose 𝐺 = ⟨𝑔⟩ is a cyclic group, where 𝑔 ∈ 𝐺 . For any 𝑔𝑛, 𝑔𝑚 ∈ 𝐺 , we have

𝑔𝑛 · 𝑔𝑚 = 𝑔𝑛+𝑚 = 𝑔𝑚+𝑛 = 𝑔𝑚 · 𝑔𝑛 .
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Therefore, 𝐺 is abelian. □

Nothing too fancy here. We’ll now take a look at the subgroups of a cyclic group. It turns out that they’re also cyclic. While
intuitive, there’s nothing obvious about this fact, which we prove as follows.

Proposition 2.31. Let 𝐺 be a cyclic group and 𝐻 ≤ 𝐺 . Then 𝐻 is cyclic.

Proof. If 𝐻 = {𝑒}, then 𝐻 = ⟨𝑒⟩. Otherwise, there is some element 𝑔𝑘 ∈ 𝐻\{𝑒} where 𝑘 ≠ 0. Then, |𝑘 | > 0 and 𝑔 |𝑘 | ∈ 𝐻 . Let
𝑛 be the smallest positive integer such that 𝑔𝑛 ∈ 𝐻 , which is now guaranteed to exist. We claim that 𝐻 = ⟨𝑔𝑛⟩.

It is obvious from induction that ⟨𝑔𝑛⟩ in 𝐻 . Now let ℎ ∈ 𝐻 , where we take ℎ = 𝑔𝑚 . Let 𝑞 = ⌊𝑚/𝑛⌋ and 𝑟 =𝑚 mod 𝑛. Then,

ℎ = 𝑔𝑚 = (𝑔𝑛)𝑞 · 𝑔𝑟 .

Because (𝑔𝑛)𝑞 ∈ 𝐻 , we can move it to the LHS to conclude that 𝑔𝑟 ∈ 𝐻 , but 𝑟 < 𝑛. Therefore, the only possibility is 𝑟 = 0,
and hence ℎ = 𝑔𝑚 = (𝑔𝑛)𝑞 . □

Before we move forward, we state a useful fact from discrete math.

Proposition 2.32. Suppose 𝑟 ∈ Z>0 is coprime to 𝑠 ∈ Z≥0. Then, for all 𝑛 ∈ Z where 𝑟 | 𝑠𝑛, 𝑟 | 𝑛.

Proof. Fix 𝑎, 𝑏 ∈ Z such that 𝑎𝑟 +𝑏𝑠 = 1, or 𝑎𝑟𝑛+𝑏𝑠𝑛 = 𝑛. Obviously 𝑟 | 𝑎𝑟𝑛. Also, because 𝑟 | 𝑠𝑛, 𝑟 | 𝑏𝑠𝑛. Then, 𝑟 | (𝑎𝑟𝑛+𝑏𝑠𝑛),
or 𝑟 | 𝑛. □

Another useful fact that captures the order of a cyclic group is stated.

Proposition 2.33. Let 𝐺 be a cyclic group generated by 𝑔 ∈ 𝐺 . Then, 𝐺 is finite if and only if 𝑔𝑛 = 𝑒 for some 𝑛 ∈ Z>0. In
this case, the smallest such 𝑛 is |𝐺 |.

We can now describe exactly what cycle groups are.

Proposition 2.34. Suppose 𝐺 is a cyclic group. If 𝐺 is finite, then 𝐺 ≃ (Z |𝐺 | , + |𝐺 | ); otherwise, 𝐺 ≃ (Z, +).

Proof. Suppose 𝐺 = ⟨𝑔⟩ is finite with order 𝑛 ∈ Z>0. Define 𝜙 : Z𝑛 → 𝐺 by 𝜙 (𝑘) = 𝑔𝑘 , which we claim is an isomorphism.
To see injectivity, let 𝑔𝑖 = 𝑔 𝑗 where 0 ≤ 𝑖 ≤ 𝑗 < 𝑛. Then, 𝑔 𝑗−𝑖 = 𝑒 for 0 ≤ 𝑗 − 𝑖 < 𝑛, which is only possible when 𝑖 = 𝑗 .
For surjectivity, we must show {𝑒, · · · , 𝑔𝑛−1} = 𝐺 . Inclusion in the ⊆ direction is evident. For the ⊇ direction, consider an
arbitrary𝑚 ∈ Z with quotient 𝑞 = ⌊𝑚/𝑛⌋ and remainder 𝑟 =𝑚 mod 𝑛. Then,

𝑔𝑚 = (𝑔𝑛)𝑞 · 𝑔𝑟 = 𝑒𝑞 · 𝑔𝑟 = 𝑔𝑟 ∈ Z𝑛 .

This establishes that 𝜙 is bijective. Now, for all 𝑖, 𝑗 ∈ Z𝑛

𝜙 (𝑖) · 𝜙 ( 𝑗) = 𝑔𝑖 · 𝑔 𝑗 = 𝑔𝑖+𝑗 = 𝑔 (𝑖+𝑗 ) mod 𝑛 = 𝜙 (𝑖 +𝑛 𝑗),

so 𝐺 ≃ (Z𝑛, +𝑛).

Suppose now that 𝐺 = ⟨𝑔⟩ is infinite. We have similarly a map 𝜙 : Z→ 𝐺 by 𝜙 (𝑘) = 𝑔𝑘 . To see injectivity, suppose 𝑔𝑖 = 𝑔 𝑗

where 𝑖 < 𝑗 . Then, 𝑔 𝑗−𝑖 = 𝑒 which contradicts the infinitude of 𝐺 . Surjectivity is from construction. Finally, we note that 𝜙
is an isomorphism by

𝜙 (𝑖) · 𝜙 ( 𝑗) = 𝑔𝑖 · 𝑔 𝑗 = 𝑔𝑖+𝑗 = 𝜙 (𝑖 + 𝑗).

Therefore, 𝐺 ≃ (Z, +). □
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We’ve seen that generators are not unique. For example, ⟨1⟩ = ⟨7⟩ = Z10 in the additive group. It’s obvious why 1 generates
the whole group, and it’s not too bad either for 7—because 7 and 10 are such that adding 7’s repeatedly gives you a shifting
that goes through all 10 possibilities:

0, 7, 14, 21, 28, 35, 42, 49, 56, 63, · · · ,

before it starts looping back to 70. In contrast, if we take 6, we see that we’ll only loop through 5 of the 10 numbers in Z10,
namely

0, 6, 12, 18, 24,

after which we have 30, which loops back to 0.

Is it because 7 is a prime? That’s a good direction to go in: indeed, any (Z𝑛, +𝑛) can be generated by any prime less than 𝑛.
But that’s not all: one can verify easily that ⟨9⟩ = Z10 too.

The next result makes this idea more precise, pointing out that ⟨𝑎⟩ = Z𝑛 exactly when 𝑎 is coprime to 𝑛. Since we already
know that cycle groups are just additive integral groups, we can rely completely on Z𝑛 by considering a number 𝑠 as an
element 𝑔𝑠 and vice versa. While every 0 ≤ 𝑠 < 𝑛 corresponds to exactly all group elements, a group element will have
many corresponding 𝑠’s when the range is not specified: they are congruent modulo 𝑛.

Note the specific way in which we framed the following Proposition. In the context of 𝐺 ≃ Z10, this is saying that there’s
a unique subgroup of𝐺 of size 10, which can be found by ⟨𝑔⟩10/1. While the subgroup is unique, its generators are not: the
generators of 𝐺 are precisely elements 𝑔𝑠 where gcd(𝑠, 𝑛) = gcd(1, 10) = 1.

Proposition 2.35. Suppose𝐺 is a cyclic group of finite order 𝑛 generated by 𝑔 ∈ 𝐺 . Then, for any positive integer 𝑑 ∈ Z>0
such that 𝑑 | 𝑛, there exists a unique subgroup𝐻 ≤ 𝐺 of order 𝑑 , which is𝐻 = ⟨𝑔𝑛/𝑑⟩. Further, for any 𝑠, 𝑡 ∈ Z>0, ⟨𝑔𝑠⟩ = ⟨𝑔𝑡 ⟩
if and only if gcd(𝑛, 𝑠) = gcd(𝑛, 𝑡).

Proof. We first show that ⟨𝑔𝑠⟩ = 𝑛/gcd(𝑛, 𝑠), where 𝑠 ∈ Z>0. Define 𝐷 ∈ Z>0 as the smallest positive integer such that
(𝑔𝑠 )𝐷 = 𝑒 . Such a 𝐷 must exist since the map Z≥0 → 𝐺 by 𝐷 ↦→ (𝑔𝑠 )𝐷 has a domain strictly larger than its codomain, which
cannot be injective. Thus (𝑔𝑠 )𝐷1 = (𝑔𝑠 )𝐷2 for some 𝐷1 > 𝐷2 ≥ 0, so (𝑔𝑠 )𝐷1−𝐷2 = 𝑒 , where 𝐷1 − 𝐷2 ≥ 1.

Because (𝑔𝑠 )𝐷 = 𝑔𝑠𝐷 = 𝑒 , we conclude that 𝑠𝐷 ≡ 0 (mod 𝑛) by the isomorphism with Z𝑛 , so 𝑛 | 𝑠𝐷 . Let𝑚 = gcd(𝑛, 𝑠), so
integers 𝑛/𝑚 and 𝑠/𝑚 are coprime and we have 𝑛/𝑚 | (𝑠/𝑚)𝐷 . By Proposition 2.32, we have 𝑛/𝑚 | 𝐷 . Since 𝐷 is smallest
such number, 𝐷 = 𝑛/𝑚; that is, ⟨𝑔𝑠⟩ = 𝑛/gcd(𝑛, 𝑠).

Now consider any positive integer𝑑 which divides𝑛. Note that when 𝑠 = 𝑛/𝑑 , we have gcd(𝑛, 𝑠) = 𝑛/𝑑 and ⟨𝑔𝑠⟩ = 𝑛/(𝑛/𝑑) =
𝑑 . The existence as promised has been demonstrated.

We conclude the proof by showing the last item. Suppose now that ⟨𝑔𝑠⟩ = ⟨𝑔𝑡 ⟩; that is, 𝑠 ≡ 𝑡 (mod 𝑛). By Euclid’s gcd
algorithm,

gcd(𝑛, 𝑠) = gcd(𝑛, 𝑠 mod 𝑛) = gcd(𝑛, 𝑡 mod 𝑛) = gcd(𝑛, 𝑡).

Conversely, if the equation above is given, then 𝑠 ≡ 𝑡 (mod 𝑛), and the isomorphism between 𝐺 and Z𝑛 establishes ⟨𝑔𝑠⟩ =
⟨𝑔𝑡 ⟩. The proof is complete. □

2.6 Generating Sets and Cayley Digraphs

Let’s consider the dihedral group 𝐷𝑛 (𝑛 ≥ 3). Applying our new concept of cyclic groups, we can see that {𝜌0, · · · , 𝜌𝑛−1} is
a cyclic subgroup of 𝐷𝑛 generated by 𝜌 , and {𝜇0, 𝜇1} is the cyclic subgroup generated by 𝜇. But can we find more general
structures that can have two generators?

The following formal definition makes it possible.

Definition 2.36. Let 𝐺 be a group. We say that a subset of elements 𝑆 ⊆ 𝐺 generates 𝐺 if for every group element 𝑔 ∈ 𝐺 ,
there exists 𝑎1, · · · , 𝑎𝑛 ∈ 𝑆 and 𝑝1, · · · , 𝑝𝑛 ∈ Z, where 𝑛 ∈ Z≥0, such that the product 𝑎𝑝1

1 · · ·𝑎
𝑝𝑛
𝑛 = 𝑔.1 The group𝐺 is said to

1The empty product when 𝑛 = 0 is defined trivially as the identity 𝑒 ∈ 𝐺 .
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be finitely generated if such a finite subset 𝑆 exists. The subgroup generated by 𝑆 is defined as the collection

{𝑎𝑝1
1 · · ·𝑎

𝑝𝑛
𝑛 | 𝑛 ≥ 0, 𝑎1, · · · , 𝑎𝑛 ∈ 𝑆, and 𝑝1, · · · , 𝑝𝑛 ∈ Z}.

This is an intuitive definition: in 𝐷𝑛 , we would consider all products like 𝜌−2𝜇3𝜌2𝜇𝜌 , which implies that {𝜌, 𝜇} generates
𝐷𝑛 .

To establish the validity of this definition, observe that Proposition 2.26 implies the “subgroup” generated by 𝑆—a name
unjustified so far—is indeed a subgroup of 𝐺 . Also, 𝑆 generates 𝐺 precisely when the subgroup generated by 𝑆 equals 𝐺 .
Further, when 𝑛 = 1, we recover the definition for cyclic groups.

We provide another perspective on this definition. The phrasing “the smallest subgroup” as follows means the intersection
of all subgroups under the given qualifications, which one can easily check is indeed a subgroup by Proposition 2.26.

Proposition 2.37. Suppose 𝐺 is a group and 𝑆 ⊆ 𝐺 . Then, the subgroup generated by 𝑆 is the smallest subgroup of 𝐺
containing 𝑆 .

Proof. Let 𝐾 denote the subgroup generated by 𝑆 and 𝐻 the smallest subgroup of𝐺 containing 𝑆 . Every product expression
in 𝐾 is from group axioms, so 𝐾 ⊆ 𝐻 . For the other direction, it is straightforward that 𝐾 is a subgroup containing 𝑆 ,
considering the expressions 𝑎𝑝1

1 with 𝑛 = 1, 𝑎1 ∈ 𝐺 , and 𝑝1 = 1. Because 𝐻 is the smallest such subgroup, we have
𝐻 ⊆ 𝐾 . □

This equivalent definition can be useful: the definition of the term “smallest” means we can leverage the definition of
intersection and obtain useful “for all” statements for proofs.

Having established the definition, we introduce a tool to visualize the structure of how some finite elements generate a
(finite) group: the Cayley digraph.

The following definition is technical; types of arrows/edges are introduced.

Definition 2.38. A digraph with 𝑘 ∈ Z>0 types of edges is a pair (𝑉 , 𝐸) where𝑉 is a set of vertices and 𝐸 ⊆ {1, · · · , 𝑘} ×𝑉
× 𝑉 is a set of edges.

Suppose a subset 𝑆 = {𝑔1, · · · , 𝑔𝑘 } ⊆ 𝐺 where 𝑘 = |𝑆 | generates a finite group𝐺 . Its Cayley digraph is a digraph with𝐺 as its
vertices and has |𝑆 | different types of edges. We add an arrow of type 𝑖 ∈ {1, · · · , 𝑘} from 𝑎 ∈ 𝐺 to 𝑏 ∈ 𝐺 if 𝑎𝑔𝑖 = 𝑏.

𝑒

𝜌 𝜌2

𝜌3

𝜇 𝜇𝜌

𝜇𝜌2𝜇𝜌3

Figure 2: The Cayley digraph of 𝐷4 generated by {𝜌, 𝜇}, where red arrows stand for 𝜌 and blue arrows stand for 𝜇.
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Above is the Cayley digraph for 𝐷4. The outer loop indicates that

𝑒 · 𝜌 = 𝜌, 𝜌 · 𝜌 = 𝜌2, 𝜌2 · 𝜌 = 𝜌3, 𝜌3 · 𝜌 = 𝑒.

The inner loop indicates that

𝜇 · 𝜌 = 𝜇𝜌, 𝜇𝜌 · 𝜌 = 𝜇𝜌2, 𝜇𝜌2 · 𝜌 = 𝜇𝜌3, 𝜇𝜌3 · 𝜌 = 𝜇.

We use different colors to indicate the use of different generators along the way, and we omit arrows when there are actually
arrows in both direction. So, the four blue arrow-less edges mean that

𝜌𝑖 · 𝜇 = 𝜇𝜌4−𝑖 and 𝜇𝜌𝑖 · 𝜇 = 𝜌4−𝑖 for 𝑖 = 1, 2, 3, 4.

Observe how the different rotational orientation of the inner and outer loop corresponds to 𝜇 flipping the orientation of the
square.

3 Structure of Groups

3.1 Groups of Permutations

In this section, we’ll dive deeper into the groups of permutations, and conclude Cayley’s theorem, which states remarkably
that every group is essentially a group of permutations.

We begin by extending the notion of isomorphism, removing the restriction that it be bijective. The resulting property
concerns and preserves only the structure of the groups, which we call a homomorphism.

Definition 3.1. Let (𝐺1, ∗1) and (𝐺2, ∗2) be groups. A map 𝜙 : 𝐺1 → 𝐺2 is said to be homomorphism from 𝐺1 to 𝐺2 if

𝜙 (𝑎 ∗1 𝑏) = 𝜙 (𝑎) ∗2 𝜙 (𝑏)

for all 𝑎, 𝑏 ∈ 𝐺1.

A motivating example is the homomorphism 𝜙 from (R, +) to (𝑈 ,×) ⊂ C∗ defined by

𝜙 (𝑥) = e𝑖𝑥 .

Indeed, 𝜙 maps the real line to the complex unit circle, and

𝜙 (𝑎 + 𝑏) = e𝑖 (𝑎+𝑏 ) = e𝑖𝑎 · e𝑖𝑏 = 𝜙 (𝑎)𝜙 (𝑏).

This is a homomorphism, but not an isomorphism—it is not injective. The real line wraps around the unit circle infinitely
many times, each time taking up a segment of length 2𝜋 .

We’ll now talk about some properties of a homomorphism that will set up our following discussion of Cayley’s theo-
rem.

Proposition 3.2. Suppose 𝐺1 and 𝐺2 are groups and 𝜙 is a homomorphism from 𝐺1 to 𝐺2. Then,

• If 𝑒1 is the identity of 𝐺1, then 𝜙 (𝑒1) is the identity of 𝐺2;

• If 𝑎 ∈ 𝐺1, then 𝜙 (𝑎−1) = 𝜙 (𝑎)−1;

• If 𝐻1 ≤ 𝐺1, then 𝜙 (𝐻1) ≤ 𝐺2;

• If 𝐻2 ≤ 𝐺2, then 𝜙−1 (𝐻2) ≤ 𝐺1.
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Proof. This is quite straightforward. For the first item, note that 𝜙 (𝑒1) = 𝜙 (𝑒1𝑒1) = 𝜙 (𝑒1)𝜙 (𝑒1). Applying the cancellation
law in 𝐺2 (Proposition 2.6), we have 𝜙 (𝑒1) = 𝑒2, the identity of 𝐺2. For the second item, note that 𝜙 (𝑎)𝜙 (𝑎−1) = 𝜙 (𝑎𝑎−1) =
𝜙 (𝑒1) = 𝑒2.

For the last two item, we leverage Proposition 2.26 by examining the group closure property and the inclusion of inverses.
If 𝐻1 ≤ 𝐺1, then for any 𝑎, 𝑏 ∈ 𝐺1, 𝜙 (𝑎)𝜙 (𝑏) = 𝜙 (𝑎𝑏) ∈ 𝜙 (𝐻1). We have shown in the second item that 𝜙 (𝑎)−1 = 𝜙 (𝑎−1) ∈
𝜙 (𝐻1) as well, so 𝜙 (𝐻1) ≤ 𝐺2. Now suppose instead that 𝐻2 ≤ 𝐺2. Let 𝑎, 𝑏 ∈ 𝜙−1 (𝐻2) be arbitrary; in other words,
𝜙 (𝑎), 𝜙 (𝑏) ∈ 𝐻2. Then, 𝑎𝑏 ∈ 𝜙−1 ({𝜙 (𝑎𝑏)}) = 𝜙−1 ({𝜙 (𝑎)𝜙 (𝑏)}). The closure property of 𝐻2 implies 𝜙 (𝑎)𝜙 (𝑏) ∈ 𝐻2, so
𝜙−1 ({𝜙 (𝑎)𝜙 (𝑏)}) ⊆ 𝜙−1 (𝐻2). Therefore, 𝑎 · 𝑏 ∈ 𝜙−1 (𝐻2). For the inverse property, we have 𝑎−1 ∈ 𝜙−1 ({𝜙 (𝑎−1)}) =

𝜙−1 ({𝜙 (𝑎)−1}) ⊆ 𝜙−1 (𝐻2). The proof is now complete. □

We will now tackle Cayley’s theorem. We aim to show that every group is a subgroup of 𝑆𝑛 for some 𝑛 ≥ 1. The big idea
is that we want to recover the notion of a permutation from no more than the group axioms alone. The tool we use is the
cancellation law, which says that multiplication by some element is a bijection from the group to itself.

Then, we can associate a multiplication function to every element. We formalize this idea.

Definition 3.3. Suppose 𝐺 is a group. To each element 𝑎 ∈ 𝐺 is associated a map 𝜆𝑎 : 𝐺 → 𝐺 , defined as

𝜆𝑎 (𝑔) = 𝑎 · 𝑔 for all 𝑔 ∈ 𝐺.

This association which maps 𝐺 to functions on 𝐺 is called the left regular representation of 𝐺 .

Now, the cancellation law tells us that each 𝜆𝑎 is an injection. Further, 𝜆𝑎 maps onto 𝐺 since every 𝑔 ∈ 𝐺 is equal to
𝜆𝑎 (𝑎−1𝑔). We can now assert that 𝜆𝑎 ∈ 𝑆𝐺 , or that the left regular representation maps 𝐺 to 𝑆𝐺 . We’re ready to prove
Cayley’s theorem.

Theorem 3.4 (Cayley’s theorem). Every group is isomorphic to a subgroup of a group of permutations.

Proof. Let𝐺 be a group. The left regular representation, which we call 𝜙 , maps𝐺 to 𝑆𝐺 . We claim that 𝜙 is a homomorphism.
Indeed, for all 𝑎, 𝑏 ∈ 𝐺 , the associated permutation 𝜙 (𝑎𝑏) = 𝜆𝑎𝑏 is defined by

𝜆𝑎𝑏 (𝑔) = 𝑎𝑏 · 𝑔 = 𝜆𝑎 (𝑏𝑔) = (𝜆𝑎 ◦ 𝜆𝑏) (𝑔) for all 𝑔 ∈ 𝐺 .

Because 𝑔 is arbitrary, this implies that the functions 𝜙 (𝑎𝑏) = 𝜙 (𝑎) ◦ 𝜙 (𝑏).

Then, 𝜙 (𝐺) ≤ 𝑆𝐺 by Proposition 3.2, and 𝜙 |𝐺 is a map onto this subgroup of permutations. It remains to show that 𝜙 is
one-to-one. Indeed, if 𝜙 (𝑎) = 𝜙 (𝑏) for some 𝑎, 𝑏 ∈ 𝐺 , then the functions 𝜆𝑎 = 𝜆𝑏 , or

𝑎𝑔 = 𝑏𝑔 for all 𝑔 ∈ 𝐺.

The cancellation law on the right implies then that 𝑎 = 𝑏 (Proposition 2.6). Because the restriction preserves the homomor-
phism property by definition, 𝜙 |𝐺 is an bijective homomorphism—an isomorphism—from 𝐺 to 𝜙 (𝐺) ≤ 𝑆𝐺 . □

This is remarkable because if we can understand the structure of permutations, we should be able to apply them to any
groups. We’ll therefore continue our investigations of permutations.

Our first result is the formalization of the following: every reordering of the numbers 1, · · · , 𝑛 should be possible by inter-
changing pairs of numbers repeatedly.

Because we can represent any permutation in disjoint cycle notation (Proposition 2.18), we need only to study how to break
any 𝑘-cycle up to a product of 2-cycles. For example, (1, 3, 2, 4) = (1, 4) (1, 2) (1, 3). Note that from right to left, 1 will be
mapped to 3, which occur in no other cycles on the left. Now, 3 will be mapped first to 1, and then to 2. Now, no cycles on
the left of (1, 2) contains 2, so we’re done. Similarly, 2 is mapped to 1 and then 4. Finally, 4 is mapped to 1 in the leftmost
cycle.

This construction can easily be extended to prove this result.
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Proposition 3.5. Every permutation can be decomposed as a product of 2-cycles.

Proof. Due to the associativity of compositions, it suffices to show that any 𝑘-cycle in 𝑆𝑛 is a product of 2-cycles, where
0 < 𝑘 ≤ 𝑛. If 𝑘 = 1, then (𝑖) ∈ 𝑆𝑛 is equal to (𝑖, 𝑖 +𝑛 1) (𝑖 +𝑛 1, 𝑖). If 𝑘 = 2, then the cycle is already a product of 2-cycles.

Now suppose 𝑘 ≥ 3. Let 𝜎 B (𝑖1, · · · , 𝑖𝑘 ) be an arbitrary 𝑘-cycle, where 𝑖• : [𝑘] → [𝑛] is injective. Consider the product

𝜋 B (𝑖1, 𝑖𝑘 ) · (𝑖1, 𝑖𝑘−1) · · · (𝑖1, 𝑖2).

Firstly, 𝜋 (𝑖1) =
(
(𝑖1, 𝑖𝑘 ) · (𝑖1, 𝑖𝑘−1)

)
(𝑖2). Because none of the 2-cycles applied to 𝑖2 contains 𝑖2, 𝜋 (𝑖1) = 𝑖2 = 𝜎 (𝑖2). Now

consider 2 ≤ 𝑗 ≤ 𝑘 − 1, where 𝑖 𝑗 appears in exactly one of the factors in all but the first 2-cycles. Then similarly,

𝜋 (𝑖 𝑗 ) =
(
(𝑖1, 𝑖𝑘 ) · (𝑖1, 𝑖𝑘−1) · · · (𝑖1, 𝑖2)

)
(𝑖 𝑗 ) =

(
(𝑖1, 𝑖𝑘 ) · · · (𝑖1, 𝑖 𝑗+1) · (𝑖1, 𝑖 𝑗 )

)
(𝑖 𝑗 ) =

(
(𝑖1, 𝑖𝑘 ) · · · (𝑖1, 𝑖 𝑗−1)

)
(𝑖 𝑗+1) = 𝑖 𝑗+1,

because in the last equality, the permutation applied to 𝑖 𝑗+1 on the left hand side does not contain 𝑖 𝑗+1 and hence doesn’t
change its value. Lastly, 𝑖𝑘 appears only in the leftmost 2-cycle, so 𝜋 (𝑖𝑘 ) = 𝑖1. The proof is complete. □

This result is used in many cases, a notable example of which is the determinant. The rows of a square matrix are permuted,
and we tack on the sign of each permutation:

det𝐴 =
∑︁
𝜎∈𝑆𝑛

sgn𝜎 · ©«
∏
𝑖∈[𝑛]

𝐴𝑖,𝜎 (𝑖 )
ª®¬ .

As you might recall, for a permutation written in a product of 𝑘 2-cycles, the sign is defined as (−1)𝑘 . But—at least in my
experience—I never knew why this definition is consistent. After all, this 𝑘 is not unique:

(1, 2) = (1, 2) (1, 3) (1, 3) ∈ 𝑆3,

so 𝑘 could be either 1 or 3. It so happens in this case that they’re both odd, but can we say this in full generality?

Group theory provides some insights. We detail a proof suggested by David M. Bloom, which relies on the concept of an
orbit.

Definition 3.6. Suppose 𝐴 is a non-empty set. Let 𝜎 ∈ 𝑆𝐴 and 𝑎 ∈ 𝐴. The orbit of 𝑎 is defined as the set

{𝜎𝑘 (𝑎) | 𝑘 ∈ Z} ⊆ 𝐴.

The orbits of 𝜎 partition 𝐴.

In the case of 𝑆𝑛 , the orbit of 𝑎 for 𝜎 ∈ 𝑆𝑛 is simply the length of the cycle containing 𝑎 in the disjoint cycle notation. So for
(1, 3, 2) (4, 5) ∈ 𝑆5, the orbits of 1, 2, and 3 are all {1, 2, 3}, and the orbits of 4 and 5 are both {4, 5}. We will show this result
for finite permutation groups, which are relevant for the determinant definition above.

Lemma 3.7. Suppose 𝜎 ∈ 𝑆𝑛 is a permutation of 1, · · · , 𝑛. If 𝜎 can be written as a product of 𝑘1 2-cycles and as a product
of 𝑘2 2-cycles simultaneously, then 𝑘1 and 𝑘2 share the same parity; that is, they are either both odd or both even.

Proof. Let 𝜎 ∈ 𝑆𝑛 and 𝜏 = (𝑖, 𝑗) ∈ 𝑆𝑛 be arbitrary, where we assume 𝑖 > 𝑗 without loss of generality. We claim first that the
number of orbits of 𝜎 and 𝜏𝜎 differ by 1.

Case I. Suppose 𝑖 and 𝑗 are in different orbits of 𝜎 . 𝜏𝜎 will only differ from 𝜎 over elements in the two cycles containing
𝑖 and 𝑗 . Suppose that this restriction is equal to (𝑏, 𝑗,×,×,×)(𝑎, 𝑖,×,×) symbolically, where × represents other possible
elements in the orbit/cycle and appears arbitrarily many times. We have

(𝑖, 𝑗) (𝑏, 𝑗,×,×,×)(𝑎, 𝑖,×,×) = (𝑏, 𝑖,×,×, 𝑎, 𝑗,×,×,×).

Therefore, in 𝜏𝜎 , 𝑏, 𝑖,×,×, 𝑎, 𝑗,×,×,× are joined to one orbit. The orbits of other elements remain the same in 𝜎 and 𝜏𝜎 .
Therefore, 𝜎 has 1 more orbit than 𝜏𝜎 .
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Figure 3: Case I in the proof of Lemma 3.7

Figure 4: Case II in the proof of Lemma 3.7

Case II. Suppose 𝑖 and 𝑗 are in the same orbit. Suppose this orbit is (𝑎, 𝑖,×,×, 𝑏, 𝑗,×,×,×). Then, restricted to these
elements, 𝜏𝜎 is

(𝑖, 𝑗) (𝑎, 𝑖,×,×,×, 𝑏, 𝑗,×,×) = (𝑎, 𝑗,×,×)(𝑏, 𝑖,×,×,×).

In 𝜏𝜎 , 𝑎, 𝑖,×,×,×, 𝑏, 𝑗,×,× are separated to two orbits. The orbits of other elements remain the same in 𝜎 and 𝜏𝜎 . Therefore,
𝜎 has 1 fewer orbit than 𝜏𝜎 .

Now, observe that the identity permutation 𝜄 ∈ 𝑆𝑛 has 𝑛 orbits, where each orbit is a singleton. Suppose 𝜎 is written as
products

𝜏1 · · · 𝜏𝑠𝜄 and 𝜏 ′1 · · · 𝜏 ′𝑡 𝜄.

Then, �𝑛 + 𝑖1 + · · · + 𝑖𝑠 = �𝑛 + 𝑗1 + · · · + 𝑗𝑡 , where 𝑖1, · · · , 𝑖𝑠 , 𝑗1, · · · , 𝑗𝑡 ∈ {−1, 1}. Because addition by 1 or -1 toggles the parity of
the sum, 𝑖1 + · · · + 𝑖𝑠 shares the parity of 𝑠 and 𝑗1 + · · · + 𝑗𝑡 shares the parity of 𝑡 . This mean 𝑠 and 𝑡 share the same parity. □

This justifies the definition of the sign of permutations.

Definition 3.8. Let 𝜎 ∈ 𝑆𝑛 be a permutation written as a product of 𝑘 factors of 2-cycles. Then, the sign of 𝜎 , denoted as
sgn𝜎 , is defined as (−1)𝑘 . We say that 𝜎 is even if 𝑘 is even and that 𝜎 is odd if 𝑘 is odd.

Even though there are many possible values of 𝑘 for a given permutation, they all share the same parity, so the value of
(−1)𝑘 remains unique. Therefore, sgn𝜎 is well-defined.

If you add two even numbers, you get even numbers. But the sum of two odd numbers is always odd. In the same spirit,
the closure property works for even permutations as well, but not odd permutations.

Proposition 3.9. Suppose 𝑛 ∈ Z≥2. The collection of all even permutations 𝜎 ∈ 𝑆𝑛 , denoted as 𝐴𝑛 < 𝑆𝑛 , forms a subgroup
of 𝑆𝑛 of order 𝑛!/2.

Proof. Consider an arbitrary 2-cycle 𝜏 ∈ 𝑆𝑛 , which exists because 𝑛 ≥ 2. Let 𝐴𝑛 ⊆ 𝑆𝑛 be the collection of all even permu-
tations and 𝐵𝑛 ⊆ 𝑆𝑛 the set of all odd permutations. We claim that 𝜆𝜏 , when restricted to 𝐴𝑛 , maps one-to-one and onto
𝐵𝑛 , which would imply that |𝐴𝑛 | = |𝐵𝑛 | = |𝑆𝑛 |/2 = 𝑛!/2. Indeed, for every odd permutation 𝜎 ′ ∈ 𝐵𝑛 , 𝜏−1𝜎 ′ ∈ 𝐴𝑛 is even
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and 𝜎 = 𝜆𝜏 (𝜏−1𝜎) ∈ 𝐵𝑛 , so 𝜆𝜏 |𝐴𝑛
is onto. Whenever 𝜆𝜏 (𝜎1) = 𝜆𝜏 (𝜎2) where 𝜎1, 𝜎2 ∈ 𝐴𝑛 , we have 𝜏𝜎1 = 𝜏𝜎2, which implies

𝜎1 = 𝜎2 by the cancellation law.

We now show that 𝐴𝑛 forms a subgroup by Proposition 2.27. Because 𝐴𝑛 is finite, we need only to show closure. Indeed, if
𝜎1, 𝜎2 ∈ 𝐴𝑛 , then 𝜎1 can be written as an even number 𝑘1 of 2-cycles and so can 𝜎2 as an even number 𝑘2 of 2-cycles. Then,
𝜎1𝜎2 can be written as a product of (𝑘1 + 𝑘2) 2-cycles, where 𝑘1 + 𝑘2 is even. Then, Lemma 3.7 implies that 𝜎1𝜎2 is again
even. The proof is now complete. □

Alternatively, to gain additional insight, one can note that when restricted, sgn is a homomorphism from 𝑆𝑛 to the group
({1,−1},×) of order 2. Note that the second group is just Z2 (there’s only one group of order 2).

Proposition 3.10. The sign of a permutation is a homomorphism from 𝑆𝑛 to the group ({1,−1},×) of order 2.

Proof. Suppose 𝜎 ∈ 𝑆𝑛 is a product of 𝑘1 2-cycles and 𝜏 ∈ 𝑆𝑛 a product of 𝑘2 2-cycles. Then, 𝜎𝜏 is a product of (𝑘1 + 𝑘2)
2-cycles. There are four cases:

• If 𝜎 and 𝜏 are both odd, then 𝑘1 + 𝑘2 is even. Indeed, sgn(𝜎𝜏) = (−1)2 = 1 = sgn𝜎 · sgn𝜏 ;

• If 𝜎 and 𝜏 are both even, then 𝑘1 + 𝑘2 is even. Indeed, sgn(𝜎𝜏) = 12 = 1 = sgn𝜎 · sgn𝜏 ;

• If 𝜎 is odd and 𝜏 is even, then 𝑘1 + 𝑘2 is odd. Indeed, sgn(𝜎𝜏) = (−1) · 1 = −1 = sgn𝜎 · sgn𝜏 ;

• If 𝜎 is odd and 𝜏 is even, then 𝑘1 + 𝑘2 is even. Indeed, sgn(𝜎𝜏) = 1 · (−1) = −1 = sgn𝜎 · sgn𝜏 .

Therefore, sgn(𝜎𝜏) = sgn𝜎 · sgn𝜏 for all 𝜎, 𝜏 ∈ 𝑆𝑛 . □

This gives an alternative way of showing that 𝐴𝑛 is a subgroup of 𝑆𝑛 .

Corollary 3.11. 𝐴𝑛 ≤ 𝑆𝑛 .

Proof. Note that𝐴𝑛 , the collection of all even permutations in 𝑆𝑛 , is simply sgn−1 [{1}], the preimage of the trivial subgroup
of the codomain. Then, 𝐴𝑛 is a subgroup of 𝑆𝑛 . □

3.2 Finitely Generated Abelian Groups

In this section, we’ll take a look at the structure of finite abelian groups and, more generally, all finitely generated abelian
groups. We begin by introducing the notion of the direct product of (finitely many) groups.

Definition 3.12. Suppose (𝐺1, ∗1), · · · , (𝐺𝑘 , ∗𝑘 ) are groups. The direct product of𝐺1, · · · ,𝐺𝑘 , denoted as𝐺1 × · ×𝐺𝑘 , is the
group of the Cartesian product equipped with elementwise group operations; that is,

(𝑔1, · · · , 𝑔𝑘 ) × (𝑔′1, · · · , 𝑔′𝑘 ) B (𝑔1 ∗1 𝑔′1, · · · , 𝑔𝑘 ∗𝑘 𝑔′𝑘 ).

One can easily verify that the direct product of groups is indeed a group as claimed, and that the direct product of abelian
groups is again abelian.

We’ve mentioned briefly before that there are two groups of order 4, namely Z4 and Z2 × Z2. The reason they’re not
isomorphic is that while Z4 is cyclic (1 has order 4), every element in Z2 × Z2 has order at most 2: every element is an
involution. If we look at the powers of (1, 1), then we see that

(0, 0), (1, 1), ���(0, 0), · · ·

But is this always the case? Let’s take a look at Z6 vs. Z2 × Z3. What would (1, 1) generate? Well, just by repeatedly adding
itself (note that there’s no need to account for inverses additionally in finite groups), we have

𝑒 = (0, 0), (1, 1), (0, 2), (1, 0), (0, 1), (1, 2), ���(0, 0), · · ·
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So (1, 1) has order 6. This means Z2 × Z3 is cyclic, and this group must be isomorphic to Z6. Is there a way we can quantify
when these structures are isomorphic?

Proposition 3.13. The group Z𝑚 × Z𝑛 is isomorphic to Z𝑚𝑛 if and only if𝑚 and 𝑛 are coprime.

Proof. First, suppose 𝑚 and 𝑛 are coprime. We claim that (1, 1) generates Z𝑚 × Z𝑛 , for which it suffices to show that the
map {0, · · · ,𝑚𝑛 − 1} → Z𝑚 × Z𝑛 that takes 𝑖 to (1, 1)𝑖 = (𝑖 mod𝑚, 𝑖 mod 𝑛) is injective. Indeed, if (𝑖 mod𝑚, 𝑖 mod 𝑛) =
( 𝑗 mod𝑚, 𝑗 mod 𝑛), we have

𝑖 ≡ 𝑗 (mod 𝑚) and 𝑖 ≡ 𝑗 (mod 𝑛).

Then,𝑚 and𝑛 both divide (𝑖− 𝑗). Because𝑚 and𝑛 are coprime, this implies that𝑚𝑛 | (𝑖− 𝑗). Given that 𝑖, 𝑗 ∈ {0, · · · ,𝑚𝑛−1},
this implies that 𝑖 = 𝑗 necessarily.

For the other direction, assume that the gcd of 𝑚 and 𝑛 is 𝑑 > 1. For any 𝑟 ∈ Z𝑚 and 𝑠 ∈ Z𝑛 , we have (𝑟, 𝑠)𝑚𝑛/𝑑 =

(𝑟𝑚𝑛/𝑑 , 𝑟𝑛𝑚/𝑑 ) = (𝑒𝑚, 𝑒𝑛) = 𝑒 , so the order of any element is at most𝑚𝑛/𝑑 < 𝑚𝑛. Therefore, Z𝑚 × Z𝑛 cannot be cyclic. □

Of course, this result can easily be extended to more groups.

Corollary 3.14. The product group
∏𝑛
𝑖=1 Z𝑚𝑖

is isomorphic to Z𝑚1 · · ·𝑚𝑛
if and only if any two of the numbers𝑚1, · · · ,𝑚𝑛

are relatively prime; that is, gcd(𝑚1, · · · ,𝑚𝑛) = 1.

Now, we take the same idea one step further to investigate the order of a particular element in such a product group. For
example, what’s the order of (2, 4) in Z4 × Z5? We know that |⟨2⟩| = 2 in Z4 and |⟨4⟩| = 5 in Z5. Starting from (0Z4 , 0Z5 ),
repeatedly adding (2, 4) means that every 2 additions take the first entry to 0, and every 5 additions take the second entry
to 0. Then, for both to be zero (so that the element in the product group is the identity), we need to add lcm(2, 5) = 10
times.

Proposition 3.15. Let (𝑎1, · · · , 𝑎𝑛) ∈
∏𝑛
𝑖=1𝐺𝑖 , where each 𝑎𝑖 is of finite order 𝑟𝑖 . Then, the order of (𝑎1, · · · , 𝑎𝑛) is

lcm(𝑟1, · · · , 𝑟𝑛).

Proof. Suppose the groups 𝐺1, · · · ,𝐺𝑛 have identities 𝑒1, · · · , 𝑒𝑛 respectively. For each 𝑖 = 1, · · · , 𝑛, because 𝑎𝑖 has order 𝑟𝑖 ,
we have 𝑎𝑘𝑖 = 𝑒𝑖 if and only if 𝑟𝑖 | 𝑘 , where 𝑘 ∈ Z>0. Now, the order of (𝑎1, · · · , 𝑎𝑛) is the smallest positive integer 𝑘 such
that (𝑎1, · · · , 𝑎𝑛)𝑘 = (𝑎𝑘1 , · · · , 𝑎𝑘𝑛) = (𝑒1, · · · , 𝑒𝑛). This requires that 𝑟1 | 𝑘, · · · , 𝑟𝑛 | 𝑘 , and hence 𝑘 = lcm(𝑟1, · · · , 𝑟𝑛) by
definition. □

These results are quite powerful: they tell us that Z2 × Z2 ; Z4, but Z2 × Z3 ≃ Z6. These result give us something strikingly
similar to the prime factorization of integers:

Theorem 3.16 (Primary Factor Version of the Fundamental Theorem of Finitely Generated Abelian Groups). Every finitely
generated abelian group 𝐺 is isomorphic to a direct product of cyclic groups of the form

Z𝑝1𝑟1 × Z𝑝2𝑟2 × · · · × Z𝑝𝑛𝑟𝑛 × Z × · · · × Z,

where 𝑝1, · · · , 𝑝𝑛 are primes, not necessarily distinct, and 𝑟1, · · · , 𝑟𝑛 are positive integers. Further, the direct product is unique
up to the rearrangement of the factors.

The proof is omitted here as this result is straightforward intuitively and logically; many technical details are necessary for
a complete proof that do not add to our insights. A non-trivial result, however, is that

∏𝑛
𝑖=1 Z ≠

∏𝑚
𝑖=1 Z if 𝑛 ≠𝑚. A possible

argument can be found here.

Theorem 3.17 (Invariant Factor Version of the Fundamental Theorem of Finitely Generated Abelian Groups). Every finitely
generated abelian group 𝐺 is isomorphic to a direct product of cyclic groups of the form

Z𝑑1 × Z𝑑𝑛 × Z × · · · × Z,
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where 𝑑1, · · · , 𝑑𝑛 ∈ Z≥2, not necessarily distinct, satisfy 𝑑1 | · · · | 𝑑𝑛 . Further, the direct product is unique up to the rearrange-
ment of the factors.

The idea is as follows. Suppose we have a primary factorization Z2 × Z4 × Z9 × Z5 × Z25 × Z125, where factors are ordered
increasingly first by the base then by the power. We rearrange the factors as follows: the factors of the same base are written
in one line flushed right.

2 4
9

5 25 125

We then multiply each column to get the invariant factors: Z5 ×Z2·9·25 ×Z4·125. The validity of this construction is obvious.
Meanwhile, any different invariant factorization of the same order must have displaced some divisor of a factor, but Z𝑝𝑖+𝑗 ;
Z𝑝𝑖 × Z𝑝 𝑗 .

3.3 Cosets and Lagrange’s Theorem

In all our examples so far, the order of a subgroup always divides that of a finite group. This is a straightforward result for
finite abelian groups: one can construct such a group explicitly leveraging the primary factor decomposition (Theorem 3.16).
Is this true in greater generality for non-abelian groups as well?

The answer is given by Lagrange’s theorem, which states precisely this divisibility relationship between a group and its
subgroup. Given a subgroup 𝐻 ≤ 𝐺 , the theorem is proven by demonstrating a partition of𝐺 , all sharing the cardinality of
𝐻 . The uniform sizes, then, mean that the order of 𝐻 divides that of𝐺 . The subsets that partition𝐺 are called the left cosets
of 𝐻 , constructed as equivalence classes of an equivalence relation ∼𝐻 on 𝐺 .

Proposition 3.18. Let 𝐻 be a subgroup of 𝐺 . The relation ∼𝐻 on 𝐺 defined through

𝑎 ∼𝐻 𝑏 ⇐⇒ 𝑎−1𝑏 ∈ 𝐻

is an equivalence relation.

Proof. We check each property of an equivalence relation. Suppose 𝑎, 𝑏, 𝑐 ∈ 𝐺 are arbitrary.

Reflexivity. Because 𝑎−1𝑎 = 𝑒 ∈ 𝐻 , ∼𝐻 is reflexive.

Symmetry. Suppose 𝑎−1𝑏 ∈ 𝐻 . Because 𝑏−1𝑎𝑎−1𝑏 = 𝑎−1𝑏𝑏−1𝑎 = 𝑒 , 𝑏−1𝑎 is the inverse of 𝑎−1𝑏 and must be in 𝐻 as well.
Therefore, ∼𝐻 is symmetric.

Transitivity. Now suppose 𝑎−1𝑏, 𝑏−1𝑐 ∈ 𝐻 . Then, 𝑎−1𝑐 = (𝑎−1𝑏) ∗ (𝑏−1𝑐) ∈ 𝐻 , so ∼𝐻 is transitive. □

The equivalence classes of an equivalence relation on 𝐺 always partition 𝐺 . For an arbitrary 𝑎 ∈ 𝐺 ≥ 𝐻 , the subset
containing 𝑎 is precisely the collection of all 𝑥 ∈ 𝐺 such that 𝑎 ∼𝐻 𝑥 , or 𝑎−1𝑥 ∈ 𝐻 . This means that any 𝑥 ∈ 𝐺 is in this
subset precisely when 𝑎−1𝑥 = ℎ for some ℎ ∈ 𝐻 , or 𝑥 = 𝑎ℎ. We therefore denote the equivalence class of 𝑎 as 𝑎𝐻 .

Definition 3.19. Suppose 𝐺 is a group. Let 𝑎 ∈ 𝐺 and 𝐻 ≤ 𝐺 . The subset {𝑎ℎ | ℎ ∈ 𝐻 } ⊆ 𝐺 , denoted as 𝑎 ∗ 𝐻 or simply
𝑎𝐻 , is called the left coset of 𝐻 containing 𝑎. Similarly, the subset {ℎ𝑎 | ℎ ∈ 𝐻 }, denoted as 𝐻 ∗ 𝑎 or 𝐻𝑎, is defined as the
right coset of 𝐻 containing 𝑎.

Let’s consider the additive group (Z, +) of integers and the subgroup 3Z of integers divisible by 3. What are all the left cosets
of 3Z?

First, the identity always works. The left coset of 0 is 0 + 3Z = 3Z. Now, any integer not in 3Z would be in a separate left
coset, like 1. Then, 1 + 3Z = {· · · ,−5,−2, 1, 4, · · · , } is another left coset. Because 2 is not in either, we have yet another left
coset 2 + 3Z = {· · · ,−4,−1, 2, 5, · · · }. Now, these three left cosets partition 3Z, so we have found all left cosets of 3Z.
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Given 𝐻 ≤ 𝐺 and 𝑎 ∈ 𝐺 , there is a natural map from 𝐻 to 𝑎𝐻 by ℎ ↦→ 𝑎ℎ, which is onto by definition and one-to-one from
the group cancellation law. The arbitrary choice for 𝑎 means that every left coset of a subgroup has the same cardinality as
that subgroup, even when 𝐺 is infinite. We’re now ready to prove Lagrange’s theorem.

Theorem 3.20 (Lagrange). Let 𝐻 be a subgroup of a finite group 𝐺 . Then, the order of 𝐻 divides the order of 𝐺 .

Proof. Suppose there are 𝑘 cosets of 𝐻 , 𝑎1𝐻, · · · , 𝑎𝑘𝐻 ⊆ 𝐺 for some 𝑎1, · · · , 𝑎𝑘 ∈ 𝐺 . Consider the maps 𝑓𝑖 : 𝐻 → 𝑎𝑖𝐻

by ℎ ↦→ 𝑎𝑖ℎ for 𝑖 ∈ {1, · · · , 𝑘}. Each map is surjective by definition and injective following the group cancellation law
(Proposition 2.6). Hence, all cosets of𝐻 , which partition𝐺 , have the same cardinality of𝐻 . Then, 𝑘 · |𝐻 | = |𝐺 |, where 𝑘 ∈ Z.
Thus, |𝐻 | divides |𝐺 |. □

This theorem allows us to generalize many results that we can obtain from the prime factorization for finite abelian groups.
An important example is the fact that every group of prime order is cyclic. This is obvious for abelian groups, since the
prime factorization is unique. But it is not at all straightforward why this might be true for non-abelian groups (well, to be
clearer, no non-abelian group have prime order).

Corollary 3.21. Every group of prime order is cyclic.

Proof. Suppose𝐺 is a group with prime order 𝑝 = |𝐺 | ≥ 2. Choose an arbitrary group element 𝑔 ∈ 𝐺\{𝑒}. Because the only
element of order 1 is the identity, the order of 𝑔 is at least 2. Since it must divide 𝑝 , it must equal 𝑝 as 𝑝 is a prime. Therefore,
𝑔 generates 𝐺 , and 𝐺 is cyclic. □

In a similar perspective, we note the following:

Corollary 3.22. The order of an element of a finite group divides the order of the group.

Lastly, we introduce a new terminology.

Definition 3.23. The index of a subgroup 𝐻 of a group 𝐺 , denoted as (𝐺 : 𝐻 ), is the cardinality of the set of equivalence
classes of ∼𝐻 .

Of course, when 𝐺 is finite, the index is simply (𝐺 : 𝐻 ) = |𝐺 |/|𝐻 |. But this also works for infinite groups. For instance,
(Z : 2Z) = 2.

4 Homomorphisms and Factor Groups

4.1 Factor Groups

Recall the concept of a quotient space: given a vector space 𝑉 , say R2, and a subspace 𝑈 like the diagonal line 𝑦 = 𝑥 , the
quotient space 𝑉 /𝑈 is the space of all lines parallel to the given 𝑦 = 𝑥 . In order to make these lines into another vector
space, we define the operation of 𝑣 + 𝑈 , representing the line whose displaced by the vector 𝑣 . So we define adding two
lines 𝑣 +𝑈 and𝑤 +𝑈 as (𝑣 +𝑈 ) + (𝑤 +𝑈 ) = (𝑣 +𝑤) +𝑈 and scaling a line 𝑣 +𝑈 as 𝑐 · (𝑣 +𝑈 ) = (𝑐 · 𝑣) +𝑈 .

Since addition forms an abelian group in every vector space, it’s natural to think about the coarser group structure of addition
on the quotient space. Generalizing this concept, we have factor groups, constructed as the left cosets of a subgroup. The
notation 𝑎𝐻 is already the “𝑣 +𝑈 ”—but there’s a catch.

While vector spaces are abelian groups under addition, a general group may not be abelian. As a result, the left and right
cosets of a subgroup may be different. While this doesn’t bother us when defining cosets as simply subsets that partition a
group (either left or right could work in the proof of Lagrange’s theorem), this distinction means not all subgroups 𝐻 ≤ 𝐺
will lead to a well-defined group structure on 𝐺/𝐻 .

Definition 4.1. A subgroup 𝐻 of a group 𝐺 is said to be normal, denoted as 𝐻 ⊴ 𝐺 , if 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺 ; that is, the
left and right cosets of 𝐻 coincide. In this case, we refer to either the left or the right cosets of 𝐻 as simply cosets of 𝐻 , and
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define the factor group of 𝐺 by 𝐻 as the group of cosets of 𝐻 endowed with the operation

(𝑎𝐻 ) ∗ (𝑏𝐻 ) B (𝑎𝑏)𝐻

for all 𝑎, 𝑏 ∈ 𝐺 .

It is non-trivial to show that this definition works. While every coset is captured by the notation 𝑎𝐻 for some 𝑎 ∈ 𝐺 , the
choice for 𝑎 is not unique. In fact, pick any other 𝑎 from this left coset (which we’ll call the representative of the left coset),
and 𝑎𝐻 would give you the same left coset always. So, applying the definition for different representatives of the same
groups, does their product in 𝐺/𝐻 coincide? In discrete math, during modular multiplication, we had to show explicitly
that

𝑎1 · 𝑏1 ≡ 𝑎2 · 𝑏2 (mod 𝑛)

if 𝑎1 ≡ 𝑎2 (mod 𝑛) and 𝑏1 ≡ 𝑏2 (mod 𝑛). It is precisely the same situation here.

We answer this question with the following lemma, which shows that the normality of a subgroup 𝐻 of 𝐺 is precisely the
condition for a well-defined group structure on 𝐺/𝐻 .

Lemma 4.2. Let 𝐻 be a subgroup of𝐺 . Then,𝐺/𝐻 is made into a well-defined group with the definition above if and only
if 𝐻 is normal.

Before we begin the proof, note that the coset operations have a certain kind of associativity following that of the group:

(𝑎𝑏)𝐻 = 𝑎(𝑏𝐻 ) and (𝑎𝐻 )𝑏 = 𝑎(𝐻𝑏).

This is true for all left and right cosets, whether or not 𝐻 is normal. Therefore, we remove the parentheses in these cases as
they are not necessary.

Proof. For the⇒ direction, suppose 𝐺/𝐻 is a well-defined group. Let 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑔𝐻 . Then, 𝑥 ∼𝐻 𝑔, so 𝑥𝐻 = 𝑔𝐻 and
(𝑥𝐻 ) ∗ (𝑔−1𝐻 ) = 𝑥𝑔−1𝐻 must coincide with (𝑔𝐻 ) ∗ (𝑔−1𝐻 ) = 𝑔𝑔−1𝐻 = 𝑒𝐻 . Thus, 𝑥𝑔−1 ∼𝐻 𝑒 , so 𝑥𝑔−1 ∈ 𝐻 . In other words,
𝑥 = ℎ𝑔 for some ℎ ∈ 𝐻 , so 𝑥 ∈ 𝐻𝑔. The same argument applies to show that 𝑥 ∈ 𝑔𝐻 whenever 𝑥 ∈ 𝐻𝑔, so 𝑔𝐻 = 𝐻𝑔 for all
𝑔 ∈ 𝐺 .

For the ⇐ direction, suppose now that 𝐻 is normal. Let ℎ,ℎ′ ∈ 𝐻 be arbitrary, so that 𝑎ℎ𝐻 and 𝑏ℎ′𝐻 range through all
possible representations of the respective left cosets. Then,

(𝑎ℎ𝐻 ) ∗ (𝑏ℎ′𝐻 ) = 𝑎ℎ𝑏ℎ′𝐻 = 𝑎ℎ𝑏𝐻 = 𝑎ℎ𝐻𝑏 = 𝑎𝐻𝑏 = 𝑎𝑏𝐻 .

Finally, we check that 𝐺/𝐻 is indeed a group when 𝐻 is normal. Associativity follows from that of the group operation on
𝐺 , the identity is 𝐻 , and the inverse of a group element 𝑔𝐻 is 𝑔−1𝐻 . □

Note that it is not necessary to check if the value of 𝑔−1𝐻 coincides for different 𝑔’s representing the same 𝑔𝐻 . We need
only to show that an inverse exists.

Here, we could have defined instead an operation on subsets 𝐴, 𝐵 ⊆ 𝐺 by

𝐴 ∗ 𝐵 B {𝑎𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵},

which yields (𝑎𝐻 ) (𝑏𝐻 ) = (𝑎𝑏)𝐻 when 𝐻 is normal.

The following are some results familiar to MATH 436 students who’ve taken linear algebra. Given a subspace (normal
subgroup) 𝑈 of 𝑉 , there is a natural linear map (homomorphism) 𝜋 from 𝑉 to 𝑉 /𝑈 by 𝜋 (𝑣) = 𝑣 + 𝑈 whose null space
(kernel) is𝑈 .

Shifting a line by a vector in a plane is linear in the shift, and a shift doesn’t change the location of the line iff it’s along the
line. We phrase this result in terms of group theory.
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Proposition 4.3. To each a normal subgroup 𝐻 of 𝐺 is associated a natural homomorphism 𝛾 : 𝐺 → 𝐺/𝐻 by 𝑔 ↦→ 𝑔𝐻 ,
whose kernel is 𝐻 .

Proof. Suppose 𝑎, 𝑏 ∈ 𝐺 are arbitrary. Then,

𝛾 (𝑎𝑏) = 𝑎𝑏𝐻 = (𝑎𝐻 ) ∗ (𝑏𝐻 ) = 𝛾 (𝑎) ∗ 𝛾 (𝑏).

The kernel of 𝛾 is the collection of 𝑔 ∈ 𝐺 such that 𝑔𝐻 = 𝐻 , or 𝑔 ∼𝐻 𝑒 . Then, ker𝛾 = 𝐻 . □

Now, every linear map (homomorphism) 𝑇 : 𝑉 → 𝑊 induces an isomorphism 𝑇 /null𝑇 : 𝑉 /null𝑇 → 𝑊 by 𝑣 + null𝑇 ↦→
𝑇 (𝑣). To translate this to group theory terms, we need to make sure that the subgroup null𝑇 is normal. We establish the
following:

Proposition 4.4. The kernel of any group homomorphism is a normal subgroup.

Proof. Let 𝜙 : 𝐺 → 𝐺 ′ be a group homomorphism with kernel 𝐻 = ker𝜙 . Note that for 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻 , 𝜙 (𝑔ℎ𝑔−1) =
𝜙 (𝑔)𝜙 (ℎ)𝜙 (𝑔−1) = 𝜙 (𝑔)𝜙 (𝑔−1) = 𝜙 (𝑔𝑔−1) = 𝜙 (𝑒) = 𝑒 , so 𝑔ℎ𝑔−1 ∈ 𝐻 . This means 𝑔ℎ = ℎ′𝑔 for some ℎ′ ∈ 𝐻 , so 𝑔ℎ ∈ 𝐻𝑔.
Because the choice of ℎ was arbitrary, this implies that 𝑔𝐻 = 𝐻𝑔, so 𝐻 is normal. □

The following result is known as the first isomorphism theorem, or the fundamental homomorphism theorem.

Theorem 4.5 (Fundamental Homomorphism Theorem for Groups). Let 𝜙 : 𝐺 → 𝐺 ′ be a group homomorphism with kernel
𝐻 = null𝑇 . Then, 𝜇 : 𝐺/𝐻 → 𝐺 by 𝑔𝐻 ↦→ 𝜙 (𝑔) is a well-defined isomorphism from 𝐺/𝐻 to 𝜙 [𝐺]. In other words, 𝜙 = 𝜇 ◦ 𝛾 .

Proof. We first show that 𝜇 is well-defined. Let 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻 , so 𝑔ℎ𝐻 ranges through all possible representations of 𝑔𝐻 .
Then, 𝜇 (𝑔ℎ𝐻 ) = 𝜙 (𝑔ℎ) = 𝜙 (𝑔)𝜙 (ℎ) = 𝜙 (𝑔) = 𝜇 (𝑔𝐻 ).

To show that 𝜇 is a homomorphism, note that for all 𝑔,𝑔′ ∈ 𝐺 , 𝜇 (𝑔𝐻 )𝜇 (𝑔′𝐻 ) = 𝜙 (𝑔)𝜙 (𝑔′) = 𝜙 (𝑔𝑔′) = 𝜇 (𝑔𝑔′𝐻 ) = 𝜇 ((𝑔𝐻 ) ∗
(𝑔′𝐻 )).

Now, 𝜇 is surjective by construction. It is injective because 𝜇 (𝑔𝐻 ) = 𝜇 (𝑔′𝐻 ) implies 𝜙 (𝑔) = 𝜙 (𝑔′). Now, 𝜙 [𝑔𝐻 ] = {𝜙 (𝑔ℎ) |
𝜙 (ℎ) = 𝑒} = {𝜙 (𝑔)}, so 𝑔𝐻 = 𝑔′𝐻 . □

Finally, we provide some equivalent conditions of subgroup normality.

Proposition 4.6. Let 𝐻 be a subgroup of 𝐺 . The following are equivalent.

• 𝐻 ⊴ 𝐺 ;

• 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺 ;

• 𝑔ℎ𝑔−1 ∈ 𝐻 for all 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻 ;

• 𝑔𝐻𝑔−1 = 𝐻 for all 𝑔 ∈ 𝐺 ;

• There is a group 𝐺 ′ and a homomorphism 𝜙 : 𝐺 → 𝐺 ′ such that ker𝜙 = 𝐻 .

The proof is omitted as all ideas have been used in previous arguments.

Finally, we introduce a construct called the commutator subgroup, which arises from the inspection of the equation 𝑎𝑏 = 𝑏𝑎

that assert 𝑎 and 𝑏 commute. Equivalently, 𝑎𝑏𝑎−1𝑏−1 = 𝑒 , which is the basis of the following definition.

Definition 4.7. Suppose 𝐺 is a group. Denote with 𝐶 the commutator subgroup of 𝐺 , defined as the subgroup generated
by all elements of the form 𝑎𝑏𝑎−1𝑏−1 where 𝑎, 𝑏 ∈ 𝐺 . Formally,

𝐶 = ⟨{𝑎𝑏𝑎−1𝑏−1 | 𝑎, 𝑏 ∈ 𝐺}⟩.
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As we’ll see in a moment, 𝐶 is normal. By taking the quotient of 𝐺/𝐶 , we are effectively identifying all 𝑎𝑏𝑎−1𝑏−1 with the
identity. Indeed, the quotient group will be commutative. In fact, we have the following stronger result concerning the
commutativity of a factor group.

Theorem 4.8. Suppose𝐺 is a group. Then,𝐶 ⊴ 𝐺 . Further, for all 𝑁 ⊴ 𝐺 , the factor group𝐺/𝑁 is abelian if and only if𝐶 ≤ 𝑁 .

Proof. First, observe that the inverse of an element 𝑎𝑏𝑎−1𝑏−1 from the generating set is 𝑏𝑎𝑏−1𝑎−1, also from the generating
set. Thus, 𝐶 contains precisely all finite products of elements from the generating set; that is,

𝐶 =

{
𝑘∏
𝑖=1
(𝑎𝑖𝑏𝑖𝑎−1

𝑖 𝑏
−1
𝑖 )

���� 𝑘 ≥ 0 and 𝑎1, · · · , 𝑎𝑘 , 𝑏1, · · · , 𝑏𝑘 ∈ 𝐺
}
.

For the normality of𝐶 , we must show that𝑔(𝑎1𝑏1𝑎
−1
1 𝑏−1

1 ) · · · (𝑎𝑘𝑏𝑘𝑎−1
𝑘
𝑏−1
𝑘
)𝑔−1 ∈ 𝐶 . Note that between every pair of adjacent

parentheses, we may insert 𝑒 = 𝑔−1𝑔without affecting the value of the expression, which separates the left hand side element
as a product of elements 𝑔𝑎𝑖𝑏𝑖𝑎−1

𝑖 𝑏
−1
𝑖 𝑔
−1. By the closure of 𝐶 , it suffices to show that all such elements are included in 𝐶 .

Indeed, given 𝑔, 𝑎, 𝑏 ∈ 𝐺 , we have

𝑔𝑎𝑏𝑎−1𝑏−1𝑔−1 = 𝑔𝑎𝑏𝑎−1 · (𝑔−1𝑏−1𝑏𝑔) · 𝑏−1𝑔−1 = (𝑔𝑎 · 𝑏 · 𝑎−1𝑔−1 · 𝑏−1) · (𝑏 · 𝑔 · 𝑏−1 · 𝑔−1) ∈ 𝐶.

For the further claim, observe the following chain of equivalences:

𝐺/𝑁 is abelian ⇐⇒ (𝑎𝑁 ) · (𝑏𝑁 ) = (𝑏𝑁 ) · (𝑎𝑁 ) for all 𝑎, 𝑏 ∈ 𝐺
⇐⇒ 𝑎𝑏 ∼𝑁 𝑏𝑎 for all 𝑎, 𝑏 ∈ 𝐺
⇐⇒ 𝑎𝑏𝑎−1𝑏−1 ∼𝑁 𝑒 for all 𝑎, 𝑏 ∈ 𝐺
⇐⇒ 𝑎𝑏𝑎−1𝑏−1 ∈ 𝑁 for all 𝑎, 𝑏 ∈ 𝐺
⇐⇒ 𝐶 ≤ 𝑁 .

The proof is complete. □

4.2 Simple Groups

We expand upon our previous discussion on factor groups and cosets to gain some additional insights on the structure of
groups.

Definition 4.9. A group is said to be simple if it is non-trivial and has no proper non-trivial normal subgroups.

Why does this concept matter, and what does it tell us? In general, we do not have results as strong as the primary factor
decomposition for finitely generated groups: if 𝐺 is a group of order 𝑛 and 𝑘 divides 𝑛, we need not have any subgroup 𝐻
of order 𝑘 . Rather, we ask if 𝐺 is normal; for if not then we can keep quotienting the non-trivial normal subgroups until it
is simple. Note that for the finite abelian cases, the only normal subgroups are Z𝑝 (up to isomorphisms of groups) due to
the factorization.

Definition 4.10. A subgroup 𝑀 of 𝐺 is said to be maximally normal if 𝑀 is normal and no proper normal subgroup of 𝐺
contains 𝑀 properly.

Intuitively, quotienting by such a maximally normal subgroup 𝑀 means we can’t quotient any more afterwards. In other
words:

Proposition 4.11. A normal subgroup 𝑀 of 𝐺 is maximally normal if and only if 𝐺/𝑀 is simple.

Proof. For the⇒ direction, suppose 𝑀 ⊴ 𝐺 is maximally normal and consider the surjective homomorphism 𝛾 : 𝐺 → 𝐺/𝑀
by 𝑔 ↦→ 𝑔𝑀 . Suppose for the sake of contradiction that𝐺/𝑀 is not simple, where �̃� is a non-trivial normal proper subgroup
of 𝐺/𝑀 . Consider 𝐻 = 𝜙−1 [�̃� ] with |𝐻 | ≥ |�̃� | > 0. Because 𝑒𝐺/𝑀 = 𝑀 ∈ �̃� and any𝑚 ∈ 𝑀 has𝑚𝑀 = 𝑀 , 𝑀 ⊆ 𝐻 . Further,
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since �̃� is non-trivial, we may assert about the pre-image that 𝐻 properly contains 𝑀 ; similarly, since �̃� ⊊ 𝐺/𝑀 , 𝐻 ⊊ 𝐺 .
Therefore, 𝑀 cannot be a maximally normal subgroup.

Conversely, let𝐺/𝑀 be simple but assume for contradiction that𝑀 is not maximally normal, with a proper normal subgroup
𝑁 of 𝐺 strictly containing 𝑀 . Then the normal subgroup 𝜙 [𝑁 ] strictly contains the trivial subgroup 𝜙 [𝑀] = {𝑒} of 𝐺/𝑀 .
Note that because 𝑁 is a proper subgroup of 𝐺 , 𝜙 [𝑁 ] is also a proper subgroup of 𝐺/𝑀 . Then, 𝐺/𝑀 is not simple, a
contradiction. □

4.3 Group Action on a Set

The concept of viewing a group element as something that acts on another object is not new. For instance, elements of 𝑆𝑛 are
functions that act on (are applied to) the numbers 1, · · · , 𝑛, and elements of𝐷𝑛 act on regular 𝑛-gons. In most abstract ways,
the heart of Cayley’s theorem is that a fixed group element can be thought of as an action on the group via left-multiplication
by this element.

We will generalize this concept with the concept of group actions. As is the case for groups, the entire structure of groups
actions are encapsulated by a “binary operation” but on different sets.

Definition 4.12. Suppose 𝑋 is a set and 𝐺 a group. An group action, or simply an action, of 𝐺 on 𝑋 is a binary map
∗ : 𝐺 × 𝑋 → 𝑋 such that

• 𝑒 ∗ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋 ;

• (𝑎𝑏) ∗ 𝑥 = 𝑎 ∗ (𝑏 ∗ 𝑥) for all 𝑎, 𝑏 ∈ 𝐺 and 𝑥 ∈ 𝑋 .

𝑋 is said to be a 𝐺-set where the context of the associated group action ∗ is understood. 𝐺 is said to act on 𝑋 by ∗. When
no ambiguity can arise, one simply writes 𝑔𝑥 for 𝑔 ∗ 𝑥 where 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋 .

The two additional stipulations ensure that the structure of the group action is compatible with that of the group. We
interpret the ∗ operation as right-associative, so that 𝑎 ∗ 𝑏 ∗ 𝑥 means 𝑎 ∗ (𝑏 ∗ 𝑥) naturally.

The following are some examples:

• 𝑆𝑛 acts on {1, · · · , 𝑛} by 𝜎 ∗ 𝑖 = 𝜎 (𝑖);

• 𝐷𝑛 acts on regular 𝑛-gons by rotation;

• GL𝑛 (R) acts on R𝑛 by 𝐴 ∗ 𝑣 = 𝐴𝑣 ;

• GL𝑛 (R) acts on 𝑀𝑛 (R) by 𝐴 ∗ 𝐵 = 𝐴𝐵𝐴−1;

We state some natural definitions following the concept of group actions.

Proposition 4.13. Suppose 𝐺 acts on 𝑋 by ∗. Then, to each 𝑔 ∈ 𝐺 is associated a canonical bijection, or a canonical
permutation, 𝜆𝑔 : 𝑋 → 𝑋 via 𝑥 ↦→ 𝑔𝑥 .

Proof. Let 𝑦 ∈ 𝑋 and consider 𝑥 = 𝑔−1 ∗𝑦. Then, 𝑔 ∗𝑥 = 𝑔 ∗𝑔−1 ∗𝑦 = (𝑔𝑔−1) ∗𝑦 = 𝑒 ∗𝑦 = 𝑦, so 𝜆𝑔 is surjective. Now, suppose
𝜆𝑔 (𝑥) = 𝜆𝑔 (𝑦), or 𝑔 ∗𝑥 = 𝑔 ∗𝑦, where 𝑥,𝑦 ∈ 𝑋 . Then, applying 𝑔−1 to both sides yields 𝑔−1 ∗𝑔 ∗𝑥 = 𝑔−1 ∗𝑔 ∗𝑦, or 𝑒 ∗𝑥 = 𝑒 ∗𝑦.
Thus, 𝑥 = 𝑦 and 𝜆𝑔 is injective. □

Note how the above proof hinges upon the two stipulations from the definition of group actions, so that we may obtain the
left cancellation law of group actions.

A bijection from 𝑋 to 𝑋 is a permutation on 𝑋 , so this association is a map from 𝐺 to 𝑆𝑋 .

Lemma 4.14. Suppose 𝐺 acts on 𝑋 by ∗. Then, the map 𝜙 : 𝐺 → 𝑆𝑋 by 𝑔 ↦→ 𝜆𝑔 is a canonical homomorphism.
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Proof. Let 𝑎, 𝑏 ∈ 𝐺 and 𝑥 ∈ 𝑋 . Then, 𝜙 (𝑎) ◦ 𝜙 (𝑏) = 𝜆𝑎 ◦ 𝜆𝑏 = 𝑥 ↦→ 𝑎 ∗ 𝑏 ∗ 𝑥 = 𝜆𝑎𝑏 = 𝜙 (𝑎𝑏). □

Given that𝐺 acts on 𝑋 by ∗, we can naturally ask, what group elements from𝐺 would leave the entirety of 𝑋 unchanged?
Such elements form a normal subgroup of 𝐺 .

Definition 4.15. Suppose 𝐺 acts on 𝑋 by ∗. The group action ∗ is said to be faithful if the only element 𝑔 ∈ 𝐺 such that
𝑔 ∗ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋 is 𝑔 = 𝑒; or equivalently, the canonical homomorphism 𝜙 : 𝐺 → 𝑆𝑋 is injective.

Proposition 4.16. Suppose 𝐺 acts on 𝑋 by ∗. Then, 𝑁 B {𝑔 ∈ 𝐺 | 𝑔 ∗ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋 } forms a normal subgroup of 𝐺 .
Further, the action of 𝐺/𝑁 on 𝑋 by 𝑔𝑁 ∗ 𝑥 = 𝑔 ∗ 𝑥 is faithful.

Proof. We first show 𝑁 ≤ 𝐺 . Suppose 𝑎, 𝑏 ∈ 𝑁 and 𝑥 ∈ 𝑋 . Then, (𝑎𝑏) ∗ 𝑥 = 𝑎 ∗ 𝑏 ∗ 𝑥 = 𝑎 ∗ 𝑥 = 𝑥 , so 𝑎𝑏 ∈ 𝑁 . Similarly,
applying the left cancellation law (Proposition 4.13), 𝑎 ∗ 𝑥 = 𝑥 implies 𝑎−1 ∗ 𝑥 = 𝑥 , so 𝑎−1 ∈ 𝑁 .

Suppose further that 𝑔 ∈ 𝐺 , so 𝑔−1 ∗ 𝑥 ∈ 𝑋 . Note that 𝑔𝑎𝑔−1 ∗ 𝑥 = 𝑔 ∗ 𝑎 ∗ (𝑔−1 ∗ 𝑥) = 𝑔 ∗ (𝑔−1 ∗ 𝑥) = (𝑔𝑔−1) ∗ 𝑥 = 𝑒 ∗ 𝑥 = 𝑥 ,
so 𝑔𝑎𝑔−1 ∈ 𝑁 and normality follows from Proposition 4.6.

We now show the action is well-defined. Suppose 𝑔𝑁 = ℎ𝑁 ; that is, the action of 𝑔−1ℎ ∈ 𝑁 is the identity on 𝑋 . Then,
𝑔 ∗ 𝑥 = 𝑔 ∗ (𝑔−1ℎ ∗ 𝑥) = ℎ ∗ 𝑥 indeed. Finally, suppose 𝑔𝑁 ∗ 𝑥 = ℎ𝑁 ∗ 𝑥 for all 𝑥 ∈ 𝑋 , where 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋 ; that is,
𝑔 ∗ 𝑥 = ℎ ∗ 𝑥 . Then, 𝑔−1ℎ ∗ 𝑥 = 𝑥 , so 𝑔−1ℎ ∈ 𝑁 . In other words, 𝑔 ∼𝑁 ℎ, or 𝑔𝑁 = ℎ𝑁 . □

In retrospect, one can note that 𝑁 is the kernel of the canonical homomorphism to 𝑆𝑋 and is hence normal by Proposi-
tion 4.4.

Restricting our attention to group elements that leave a particular 𝑥 ∈ 𝑋 fixed, we obtain another subgroup which we call
the stabilizer. Note that with this restriction, such a subgroup need not be normal anymore.

Definition 4.17. Suppose 𝐺 acts on 𝑋 by ∗ and let 𝑥 ∈ 𝑋 . The stabilizer of 𝑥 is defined as

𝐺𝑥 = {𝑔 ∈ 𝐺 | 𝑔 ∗ 𝑥 = 𝑥}.

In other words, the stabilizer of a set element 𝑥 is the collection of all group elements that do not change, or stabilize,
𝑥 .

Proposition 4.18. Suppose 𝐺 acts on 𝑋 by ∗ and let 𝑥 ∈ 𝑋 . Then, the stabilizer of 𝑥 is a subgroup of 𝐺 .

Proof. Suppose 𝑔, ℎ ∈ 𝐺𝑥 ; that is, 𝑔 ∗ 𝑥 = ℎ ∗ 𝑥 = 𝑥 . Then, 𝑔ℎ ∗ 𝑥 = 𝑔 ∗ ℎ ∗ 𝑥 = 𝑔 ∗ 𝑥 = 𝑥 , so 𝑔ℎ ∈ 𝐺𝑥 . Further, acting on both
sides of 𝑔 ∗ 𝑥 = 𝑥 by 𝑔−1 yields 𝑔−1 ∗ 𝑥 = 𝑥 , so 𝑔−1 ∈ 𝐺𝑥 . Thus, 𝐺𝑥 ≤ 𝐺 by Proposition 2.26. □

Next, we introduce the concept of orbits, which we have already seen, e.g., in the proof that sgn : 𝑆𝑛 → {−1, +1} is well-
defined. One can note that the abstract definition below is strikingly similar to that of right cosets, which rightfully derive
from the algebraic compatibility of the group action and the group operation.

Definition 4.19. Suppose 𝐺 acts on 𝑋 by ∗ and let 𝑥 ∈ 𝑋 . The orbit of 𝑥 , denoted as 𝐺 ∗ 𝑥 or simply 𝐺𝑥 , is defined as

𝐺 ∗ 𝑥 B {𝑔 ∗ 𝑥 | 𝑔 ∈ 𝐺}.

Proposition 4.20. Suppose 𝐺 acts on 𝑋 by ∗. Then, the orbits of elements of 𝑋 partition 𝑋 as the equivalence classes of
the equivalence relation ∼∗ on 𝑋 where 𝑥 ∼∗ 𝑦 if and only if 𝑥 ∈ 𝐺 ∗ 𝑦.

Proof. Because 𝑥 = 𝑒 ∗ 𝑥 , we have 𝑥 ∼∗ 𝑥 for all 𝑥 ∈ 𝑋 , so ∼∗ is reflexive.

For all 𝑥,𝑦 ∈ 𝑋 , if 𝑥 ∼∗ 𝑦, then 𝑥 ∈ 𝐺 ∗ 𝑦. Fix 𝑔 ∈ 𝐺 such that 𝑥 = 𝑔 ∗ 𝑦. Then, applying 𝑔−1 to both sides yields
𝑔−1 ∗ 𝑥 = 𝑔−1 ∗ 𝑔 ∗ 𝑦 = 𝑒 ∗ 𝑦 = 𝑦, so 𝑦 ∼∗ 𝑥 . Therefore, ∼∗ is symmetric.
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Lastly, suppose 𝑥,𝑦, 𝑧 ∈ 𝑋 are such that 𝑥 ∼∗ 𝑦 and 𝑦 ∼∗ 𝑧. Fix 𝑔, ℎ ∈ 𝐺 such that 𝑥 = 𝑔 ∗ 𝑦 and 𝑦 = ℎ ∗ 𝑧. Then,
𝑥 = 𝑔 ∗ 𝑦 = 𝑔 ∗ ℎ ∗ 𝑧 = (𝑔ℎ) ∗ 𝑧, so 𝑥 ∼∗ 𝑧. Hence, ∼∗ is transitive. □

Equipped with more machinery, we can explore a few more abstract examples to gain greater insight into the concept.

• 𝐺 acts faithfully on 𝐺 by 𝑎 ∗ 𝑏 = 𝑎𝑏, which has a unique orbit. The canonical injective homomorphism from 𝐺 to 𝑆𝐺
gives rise to Cayley’s theorem;

• 𝐻 ≤ 𝐺 acts on𝐺 by ℎ ∗𝑔 = ℎ𝑔. The orbit of 𝑔 ∈ 𝐺 is𝐻 ∗𝑔 = 𝐻𝑔, the right coset of𝐻 containing 𝑔. Lagrange’s theorem
is recovered (how?) by noting the stabilizer of any element is the trivial subgroup;

• 𝐺 acts on the left cosets of 𝐻 ≤ 𝐺 by 𝑎 ∗ 𝑏𝐻 = 𝑎𝑏𝐻 .

• 𝐺 acts on 𝐻 ⊴ 𝐺 by 𝑔 ∗ ℎ = 𝑔ℎ𝑔−1. The action has a unique orbit. Because 𝐻 is normal, 𝑔 ∗ ℎ ∈ 𝐻 . Compatibility can
be seen from 𝑒ℎ𝑒−1 = ℎ and (𝑎𝑏)ℎ(𝑎𝑏)−1 = 𝑎𝑏ℎ𝑏−1𝑎−1 = 𝑎 ∗ 𝑏 ∗ ℎ.

Note how this definition is strikingly similar to that of a right coset. But there’s a catch: while all right cosets share the
same cardinality (Theorem 3.20), this is not true for even the simplest orbits! This is because the group action ∗ has the left
but not right cancellation law. If the group 𝐺 is really big, then 𝑔1 ∗ 𝑥 = 𝑔2 ∗ 𝑥 can be possible with 𝑔1 ≠ 𝑔2; that is, there
could be so many elements in 𝐺 that the left cancellation law of ∗ can be guaranteed not to hold.

So can we quantify the cardinality of a orbit easily? It turns out that the orbit of a set element is deeply tied to its stabi-
lizer.

Theorem 4.21. Suppose 𝐺 acts on 𝑋 by ∗ and let 𝑥 ∈ 𝑋 . Then, |𝐺 ∗ 𝑥 | = (𝐺 : 𝐺𝑥 ).

Proof. We establish a bijective correspondence between elements of𝐺 ∗𝑥 and left cosets of𝐺𝑥 . Suppose 𝜋 : 𝐺 ∗𝑥 → {𝑔𝐺𝑥 |
𝑔 ∈ 𝐺} is defined through 𝜋 (𝑔 ∗ 𝑥) = 𝑔𝐺𝑥 . This map is well-defined: if 𝑔 ∗ 𝑥 = ℎ ∗ 𝑥 for 𝑔, ℎ ∈ 𝐺 , then ℎ−1𝑔 ∈ 𝐺𝑥 . Hence,
𝑔 ∼𝐺𝑥

ℎ by definition, and 𝑔𝐺𝑥 = ℎ𝐺𝑥 .

Surjectivity is by construction. To show injectivity, suppose 𝑔𝐺𝑥 = ℎ𝐺𝑥 , which by the same logic above implies 𝑔 ∗ 𝑥 =

ℎ ∗ 𝑥 . □

We now introduce the concept of the center of a group, the collection of the group elements that commute with every-
thing.

Definition 4.22. Suppose𝐺 is a group. The center of𝐺 , denoted as 𝑍 (𝐺) or simply 𝑍 , is defined as the collection of group
elements which commute with all group elements; that is, 𝑍 (𝐺) B {𝑧 ∈ 𝑍 | 𝑧𝑔 = 𝑔𝑧 for all 𝑔 ∈ 𝐺}.

Such a natural construction is, not surprisingly, a subgroup. More remarkably, it is normal. This can be seen by leveraging
conjugation again. To justify the machinery, we make a quick definition of the automorphism group.

Definition 4.23. Suppose𝐺 is a group. An automorphism on𝐺 is a isomorphism from𝐺 to𝐺 . The automorphism group of
𝐺 , denoted as Aut(𝐺), is defined as the collection of all automorphisms on 𝐺 endowed with the operation of composition.

Because isomorphisms are closed under composition and inverses, the automorphism group is clearly a group.

Proposition 4.24. Suppose 𝐺 is a group. Then, the center of 𝐺 is a normal subgroup of 𝐺 .

Proof. Consider the homomorphism 𝜙 : 𝐺 → Aut(𝐺) by 𝜙 (𝑔) (𝑎) = 𝑔𝑎𝑔−1. One can verify that 𝜙 (𝑔ℎ) (𝑎) = 𝑔ℎ𝑎ℎ−1𝑔−1 =

𝑔𝜙 (ℎ) (𝑎)𝑔−1 = 𝜙 (𝑔) (𝜙 (ℎ) (𝑎)) = (𝜙 (𝑔) ◦ 𝜙 (ℎ)) (𝑎). The kernel of this homomorphism is

ker𝜙 = {𝑧 ∈ 𝐺 | 𝑧𝑔𝑧−1 = 𝑔 for all 𝑔 ∈ 𝐺} = {𝑧 ∈ 𝐺 | 𝑧𝑔 = 𝑔𝑧 for all 𝑔 ∈ 𝐺} = 𝑍 (𝐺).

Hence, by Proposition 4.4, the center 𝑍 (𝐺) is normal. □
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Turning to a particular construction of a group action, we gain some further insights into the fundamental structure of
groups.

Proposition 4.25. Suppose 𝑝 is prime and 𝐺 is a group of order 𝑝𝑛 for some integer 𝑛. Then, the center 𝑍 (𝐺) has order
divisible by 𝑝 .

Proof. Consider the action of 𝐺 on 𝐺 by 𝑔 ∗ ℎ = 𝑔ℎ𝑔−1. The set elements of 𝐺 whose orbits have cardinality 1 are precisely
those 𝑧 ∈ 𝐺 such that 𝑔 ∗ 𝑧 = 𝑔𝑧𝑔−1 = 𝑧 for all 𝑔 ∈ 𝐺 ; in other words, 𝑔𝑧 = 𝑧𝑔 for all 𝑔 ∈ 𝐺 , so such elements are precisely
those of the center 𝑍 (𝐺).

Suppose all other 𝑟 orbits, which have cardinality at least 2, are represented as𝐺 ∗𝑔1, · · · ,𝐺 ∗𝑔𝑟 . Because the orbits partition
𝐺 , we have 𝑝𝑛 = |𝑍 (𝐺) | +∑𝑟

𝑖=1 |𝐺 ∗ 𝑔𝑖 |. Rearranging the terms and applying Proposition 4.21, we have

|𝑍 (𝐺) | = 𝑝𝑛 −
𝑛∑︁
𝑖=1
(𝐺 : 𝐺𝑔𝑖 ).

Because 𝑝 divides 𝑝𝑛 and each (𝐺 : 𝐺𝑔𝑖 ), we conclude that 𝑝 must divide |𝑍 (𝐺) | as well. □

Corollary 4.26. Suppose 𝑝 is prime and 𝐺 is a group of order 𝑝𝑛 for some integer 𝑛. Then, the center 𝑍 (𝐺) is not trivial.

The result above is quite strong, and we illustrate its power with the following statement.

Proposition 4.27. Suppose 𝑝 is prime and 𝐺 is a group of order 𝑝2. Then, 𝐺 is abelian.

Proof. By Corollary 4.26 and Lagrange’s theorem (Theorem 3.20), |𝑍 | is either 𝑝 or 𝑝2. In the latter case, 𝐺 is immediately
abelian.

Suppose now that 𝑍 has order 𝑝 . The same argument as above implies the center must be cyclic, generated by some element
𝑧 ∈ 𝐺 . Because 𝑍 ⊴ 𝐺 , we may consider the factor group 𝐺/𝑍 which also has order 𝑝 and is cyclic. Suppose 𝐺/𝑍 = ⟨𝑔𝑍 ⟩
where 𝑔 ∈ 𝐺 .

Now, for arbitrary 𝑎, 𝑏 ∈ 𝐺 , suppose 𝑎 ∈ 𝑔𝑖𝑍 and 𝑏 ∈ 𝑔 𝑗𝑍 where 𝑎 = 𝑔𝑖𝑧1 and 𝑏 = 𝑔 𝑗𝑧2. Then,

𝑎𝑏 = 𝑔𝑖 (𝑧1𝑔
𝑗 )𝑧2 = 𝑔

𝑖+𝑗 (𝑧1𝑧2) = 𝑔 𝑗 (𝑔𝑖𝑧2)𝑧1 = 𝑔
𝑗𝑧2𝑔𝑖𝑧2 = 𝑏𝑎,

so 𝐺 is also abelian in this case. □

Lastly, we present Cauchy’s theorem, which serve to strengthen Lagrange’s theorem and provide additional insights as to
classifying group in a similar spirit to the primary factor decomposition of finite abelian groups. This theorem is a weaker
converse of Lagrange’s theorem: the order of every subgroup divides the group containing it, but there need not exist a
subgroup whose order is an arbitrary divisor of the group order. This is, however, the case when the divisor is prime.

Theorem 4.28 (Cauchy). Suppose 𝑝 is prime and𝐺 is a group whose order is divisible by 𝑝 . Then,𝐺 has an element, and hence
a subgroup, of order 𝑝 .

Proof. Let Z𝑝 act on
�̃� B {(𝑔0, · · · , 𝑔𝑝−1) | 𝑔0, · · · , 𝑔𝑝−1 ∈ 𝐺 and 𝑔0 · · ·𝑔𝑝−1 = 𝑒}

by 𝑛 ∗ (𝑔0, · · · , 𝑔𝑝−1) = (𝑔𝑛, · · · , 𝑔𝑝−1, 𝑔0, · · · , 𝑔𝑛−1), shifting the tuple as a cycle by 𝑛 to the right. One can verify easily that
the action is valid. Note that one must verify that the image of the action is in �̃� as well, which follows from 𝑎𝑏 = 𝑒 ⇒ 𝑏𝑎 = 𝑒 .

By similar argument as in the proof of Proposition 4.25, there are at least 𝑝 orbits of cardinality 1. The unique element in
such an orbit must admit the form (𝑔, · · · , 𝑔) for some 𝑔 ∈ 𝐺 . Indeed, if any two entries differ, then shifting one to the other
yields a different set element, leading to a contradiction. One of such possibilities is trivially (𝑒, · · · , 𝑒). Since 𝑝 ≥ 2, there
must exist some 𝑔 ∈ 𝐺\{𝑒} such that (𝑔, · · · , 𝑔) ∈ �̃� , or 𝑔𝑝 = 𝑒 . Hence, the order of 𝑔, which is known not to be 1, must
divide 𝑝 , and therefore must equal 𝑝 . □
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5 Rings and Fields

5.1 Basic Definitions

Some prototypical groups we studied in depth were Z𝑛 and Z. Both have the operation of addition, a commutative group
operation, and their structures have been well studied as finitely generated abelian groups. But there is also the operation
of multiplication which work very nicely with addition. This section aims to generalize these operations further and gain
insights into such structures.

Definition 5.1. A ring (𝑅, +, ·) is a set 𝑅 endowed with two binary operations + : 𝑅 × 𝑅 → 𝑅 and · : 𝑅 × 𝑅 → 𝑅 such that

• (𝑅, +) is an abelian group;

• · is associative;

• (𝑎 + 𝑏) · 𝑐 = 𝑎 · 𝑐 + 𝑏 · 𝑐 and 𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝑅.

We sometimes omit · and simply juxtapose ring elements 𝑎𝑏 to denote the multiplication 𝑎 · 𝑏. Similar to groups, we may
write 𝑅 rather than the 3-tuple to represent the group. 0 denotes the identity of the group operation of addition.

Some commonplace examples are Z𝑛 , Z, Q, R, and C. Importantly, note that (𝑅\{0}, ·) need not be a group. For example, in
Z4, 2 · 2 = 0, so · restricted to 𝑅\{0} is not even a well-defined binary operation.

We introduce some (i.e., many) terminologies regarding rings.

Definition 5.2. A ring 𝑅 is said to be commutative if · is commutative.

Definition 5.3. A ring 𝑅 is said to be unitary or a ring of unity if · admits an identity not equal to 0. 1 denotes this identity
when it exists.

We make sure the identity is 0 so that the trivial ring {0} counts as a ring but not a unitary one.

Note that if a binary operation has an identity, it must be unique. Hence, 1 is well-defined when it exists.

Definition 5.4. A unitary ring 𝑅 is said to be a division ring if every nonzero element admits a multiplicative inverse; that
is, ∀𝑎 ∈ 𝑅\{0}, ∃𝑏 ∈ 𝑅, 𝑎𝑏 = 𝑏𝑎 = 1. In other words, a ring 𝑅 is a division rings if (𝑅\{0}, ·) forms a group.

Definition 5.5. A field is a commutative division ring.

Let’s dive into some more examples in greater specificity:

• Z is a commutative ring but not unitary. It is hence neither a division ring or a field;

• Q, R, and C are all fields;

• H, the set of 2 × 2 complex matrices of the form (
𝑎 + 𝑏𝑖 𝑐 + 𝑑𝑖
−𝑐 + 𝑑𝑖 𝑎 − 𝑏𝑖

)
where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R, is a non-commutative division ring.

Definition 5.6. A zero divisor of a ring 𝑅 is an non-zero element 𝑎 such that 𝑎𝑏 = 0 for some non-zero 𝑏 ∈ 𝑅\{0}. A
commutative ring 𝑅 with unity is said to be an integral domain if it admits no zero divisors.

Every finite integral domain is a field. But in fact, we can strengthen this result by taking away the guaranteed existence of
unity.

Proposition 5.7. A finite commutative ring with no zero divisors is a field.
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Proof. Let 𝑎 ∈ 𝑅\{0} be non-zero and suppose 𝑅 = {𝑎1, · · · , 𝑎𝑛} has cardinality 𝑛.

We first show that the ring is unitary. Let 1 ≤ 𝑖, 𝑗 ≤ 𝑛 be arbitrary. Then, 𝑎 · 𝑎𝑖 = 𝑎 · 𝑎 𝑗 implies 𝑎 · (𝑎𝑖 − 𝑎 𝑗 ) = 0. Because 𝑅
is an integral domain and 𝑎 ≠ 0, we have 𝑎𝑖 − 𝑎 𝑗 = 0, or 𝑖 = 𝑗 . Hence, 𝑎 · 𝑎1, · · · , 𝑎 · 𝑎𝑛 ∈ 𝑅 are pairwise distinct and must
enumerate all elements of 𝑅. In particular 𝑎 · 𝑎𝑖′ = 𝑎 for some 1 ≤ 𝑖′ ≤ 𝑛. Similarly, for any 𝑏 ∈ 𝑅\{0}, 𝑏 · 𝑎 𝑗 ′ = 𝑏 for some
1 ≤ 𝑗 ′ ≤ 𝑛. Now, because 𝑅 is commutative,

0 = 𝑎𝑏 − 𝑏𝑎 = (𝑎𝑎𝑖′ )𝑏 − (𝑏𝑎 𝑗 ′ )𝑎 = 𝑎𝑏 (𝑎𝑖′ − 𝑎 𝑗 ′ ).

Because 𝑎 ≠ 0, 𝑏 (𝑎𝑖′ − 𝑎 𝑗 ′ ) = 0; because 𝑏 ≠ 0, 𝑎𝑖′ = 𝑎 𝑗 ′ , or 𝑖′ = 𝑗 ′. Therefore, 𝑎𝑖′ = 𝑎 𝑗 ′ is a multiplicative identity which we
henceforth call 1.

Because 𝑎 · 𝑎1, · · · , 𝑎 · 𝑎𝑛 contains all elements of 𝑅, 𝑎 · 𝑎𝑘 = 𝑎𝑘 · 𝑎 = 1 for some 1 ≤ 𝑘 ≤ 𝑛. □

Corollary 5.8. A finite integral domain is a field.

This result is immediate from the definition of an integral domain.

Corollary 5.9. If 𝑝 is prime, then Z𝑝 is a field.

Proof. We appeal to the fact from discrete math that if 𝑝 | 𝑎𝑏, then 𝑝 | 𝑎 or 𝑝 | 𝑏. If 𝑎, 𝑏 ∈ Z𝑝 are such that 𝑎𝑏 ≡ 0 (mod 𝑝),
then 𝑝 | 𝑎𝑏. This implies either 𝑎 = 0 or 𝑏 = 0. □

Definition 5.10. Suppose 𝑅 is a unitary ring. An element 𝑎 ∈ 𝑅 is said to be a unit if 𝑎 admits a multiplicative inverse. The
collection of all units of a ring 𝑅 is denoted as

U (𝑅) = {𝑎 ∈ 𝑅 | ∃𝑏 ∈ 𝑅, 𝑎𝑏 = 𝑏𝑎 = 1}.

Proposition 5.11. The units of a unitary ring form a group under multiplication.

Proof. Suppose 𝑎, 𝑏 ∈ 𝑅 are units with multiplicative inverses 𝑎−1 and 𝑏−1 respectively. Because (𝑎𝑏) (𝑏−1𝑎−1) = 1, the
product 𝑎𝑏 is invertible as well, which establishes closure. The associativity of multiplication over units follows from that
of the ring. A unitary ring by definition admits a multiplicative identity. The units by definition admit multiplicative
inverses. □

We finish this section by introducing the notion of the characteristic of a ring.

Definition 5.12. Let 𝑅 be a ring. The characteristic of 𝑅, denoted as char𝑅, is defined as the least 𝑛 ∈ Z>0 such that for all
𝑎 ∈ 𝑅,

𝑎 + · · · + 𝑎︸      ︷︷      ︸
𝑛 copies

= 0

when such an 𝑛 exists. Otherwise, the characteristic of 𝑅 is said to be 0.

One can easily factor out the arbitrary 𝑎; that is, we can replace the 𝑎 in the definition above with simply 1.

Considering the finite fields, we have the following:

Proposition 5.13. The characteristic of a field is either a prime or 0. In the latter case, further, there is an injective homo-
morphism from Q to the field.

5.2 Fermat’s Little Theorem and Euler’s Generalization

With the tools that rings provide, we can prove some remarkable results about natural numbers.
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Theorem 5.14 (Fermat’s Little Theorem). Suppose 𝑎 is an integer which is not divisible by a prime number 𝑝 . Then, 𝑝 divides
𝑎𝑝−1 − 1; that is, 𝑎𝑝−1 ≡ 1 (mod 𝑝).

Proof. We consider the field Z𝑝 (Corollary 5.9), in which multiplication is the group (Z∗𝑝 ,×𝑝 ), where Z∗𝑝 = Z𝑝\{0}. Because
𝑎 is not divisible by 𝑝 , 𝑎 . 0 (mod 𝑝); therefore, 𝑎 B 𝑎 mod 𝑝 ∈ Z∗𝑝 . Then, the order of 𝑎 divides |Z∗𝑝 | = 𝑝 − 1 by Corollary
3.22 of Lagrange’s theorem. Note that the power of a group element coincides with the power in integer multiplication
modulo 𝑝 . Hence, 𝑎𝑝−1 = 1 implies 𝑎𝑝−1 ≡ 𝑎𝑝−1 ≡ 1 (mod 𝑝). □

Corollary 5.15. Let 𝑎 be an integer and 𝑝 a prime number. Then, 𝑎𝑝 ≡ 𝑎 (mod 𝑝).

Proof. If 𝑎 is not divisible by 𝑝 , then 𝑎𝑝−1 ≡ 1 (mod 𝑝), and multiplying both sides by 𝑎 gives the intended result. Otherwise,
𝑎 ≡ 0 (mod 𝑝), and the result is trivially satisfied. □

This result is practically useful because it lends us a effective tool for calculating modular exponentiation. For example, 1519

modulo 7 is 1519 = 153·6 · 151 ≡ 15 ≡ 1 (mod 7).

Can we generalize this result further? For a general 𝑛 replacing 𝑝 , the units form a multiplicative group, but they need to
cover all 𝑛 − 1 elements. We therefore introduce the following function.

Definition 5.16. Euler’s totient function 𝜙 : Z>0 → Z>0 is defined by 𝜙 (𝑛) = |U (Z𝑛) | for 𝑛 ≥ 2 and 𝜙 (1) = 1 otherwise.

One may recall a more elementary definition from discrete math, which we state as follows as a Proposition.

Proposition 5.17. For 𝑛 ∈ Z≥2, 𝜙 (𝑛) equals the number of integers from 1 to 𝑛 that are coprime to 𝑛.

Proof. If 𝑛 = 1, then gcd(1, 1) = 1, which coincides with 𝜙 (1) = 1 = |{1}|. Now suppose 𝑛 ≥ 2. Clearly neither 0 or 𝑛 is
coprime to 𝑛; it therefore suffices to show that the integers from 1 to 𝑛 − 1 coprime to 𝑛 are precisely the units of the ring
Z𝑛 .

Let 𝑎 ∈ Z∗𝑛 . Suppose gcd(𝑎, 𝑛) = 1. Then, by Bezout’s identity, 𝑎𝑥 + 𝑛𝑦 = 1 for some 𝑥,𝑦 ∈ Z, which implies that 𝑎𝑥 ≡ 1
(mod 𝑛) and that 𝑎 admits a multiplicative inverse 𝑥 mod 𝑛. If instead gcd(𝑎, 𝑛) = 𝑑 > 1, then 𝑎 · (𝑛/𝑑) is an integer multiple
of 𝑛, so 𝑛/𝑑 and 𝑎 are both 0 divisors. □

Noting that 𝜙 (𝑝) = 𝑝 − 1 from the fact that Z𝑝 is a field, we can generalize Fermat’s little theorem by replacing the power
𝑝 − 1 with 𝜙 (𝑝).

Theorem 5.18 (Euler). Suppose 𝑛 ∈ Z𝑛 and 𝑎 ∈ Z is coprime to 𝑛. Then, 𝑎𝜙 (𝑛) ≡ 1 (mod 𝑛).

Proof. In Z1, the congruence 𝑎𝜙 (1) ≡ 1 ≡ 0 (mod 1) is trivial, Now suppose 𝑛 ≥ 2. Because 𝑎 is coprime to 𝑛, 𝑎 . 0
(mod 𝑛); therefore, 𝑎 B 𝑎 mod 𝑛 ∈ U (Z𝑛). Then, the order of 𝑎 divides |U (Z𝑛) | = 𝜙 (𝑛) by Corollary 3.22 of Lagrange’s
theorem. Note that the power of a group element coincides with the power in integer multiplication modulo 𝑛. Hence,
𝑎𝜙 (𝑛) = 1 implies 𝑎𝜙 (𝑛) ≡ 𝑎𝜙 (𝑛) ≡ 1 (mod 𝑛). □

We end this section with an attempt for a formula for 𝜙 (𝑛) in general. Along the way, we happen to recover the Chinese
remainder theorem!

Proposition 5.19. Suppose 𝑅1, · · · , 𝑅𝑛 are rings. Then, U (𝑅1 × · · · × 𝑅𝑛) = U (𝑅1) × · · · × U (𝑅𝑛).

Proof. Let (𝑎1, · · · , 𝑎𝑛) ∈ 𝑅1 × · · · × 𝑅𝑛 be arbitrary. Then,

(𝑎1, · · · , 𝑎𝑛) ∈ U (𝑅1 × · · · × 𝑅𝑛) ⇐⇒ ∃(𝑏1, · · · , 𝑏𝑛) ∈ 𝑅1 × · · · × 𝑅𝑛, 𝑎1𝑏1 = 𝑏1𝑎1 = · · · = 𝑎𝑛𝑏𝑛 = 𝑏𝑛𝑎𝑛 = 1
⇐⇒ (∃𝑏1 ∈ 𝑅1, 𝑎1𝑏1 = 𝑏1𝑎1 = 1) ∧ · · · ∧ (∃𝑏𝑛 ∈ 𝑅𝑛, 𝑎𝑛𝑏𝑛 = 𝑏𝑛𝑎𝑛 = 1)
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⇐⇒ 𝑎1 ∈ U (𝑅1) ∧ · · · ∧ 𝑎𝑛 ∈ U (𝑅𝑛)
⇐⇒ (𝑎1, · · · , 𝑎𝑛) ∈ U (𝑅1) × · · · × U (𝑅𝑛).

The proof is finished. □

Theorem 5.20 (Chinese Remainder Theorem). Suppose𝑚1, · · · ,𝑚𝑠 ∈ Z≥2 are pairwise coprime. Then, Z𝑚1 · · ·𝑚𝑠
≃ Z𝑚1 × · · · ×

Z𝑚𝑠
as rings.

Proof. Let 𝜙 : Z𝑚1 · · ·𝑚𝑠
→ Z𝑚1 × · · · × Z𝑚𝑠

by 𝑎 ↦→ (𝑎 mod𝑚1, · · · , 𝑎 mod𝑚𝑠 ). Suppose 𝑎, 𝑏 ∈ Z𝑚1 · · ·𝑚𝑠
are arbitrary. Then,

𝜙 (𝑎 +𝑏) = ((𝑎 +𝑏) mod𝑚1, · · · , (𝑎 +𝑏) mod𝑚𝑠 ) = (𝑎 mod𝑚1, · · · , 𝑎 mod𝑚𝑠 ) + (𝑏 mod𝑚1, · · · , 𝑏 mod𝑚𝑠 ) = 𝜙 (𝑎) +𝜙 (𝑏).
Similarly, 𝜙 (𝑎 · 𝑏) = ((𝑎 · 𝑏) mod𝑚1, · · · , (𝑎 · 𝑏) mod𝑚𝑠 ) = (𝑎 mod𝑚1, · · · , 𝑎 mod𝑚𝑠 ) · (𝑏 mod𝑚1, · · · , 𝑏 mod𝑚𝑠 ) =
𝜙 (𝑎) · 𝜙 (𝑏). Therefore, 𝜙 is a homomorphism of rings.

For injectivity, suppose 𝜙 (𝑎) = 𝜙 (𝑏); that is, 𝜙 (𝑎 − 𝑏) = 0. Then, 𝜙 (𝑎) = 𝜙 (𝑏) ⇒ 𝑎 − 𝑏 = 0; it therefore suffices to show
that the kernel of 𝜙 is trivial. Indeed, if 𝜙 (𝑎) = 0, then 𝑎 mod𝑚1 = · · · = 𝑎 mod𝑚𝑠 = 0; that is, each of 𝑚1, · · · ,𝑚𝑠

divides 𝑎. Because𝑚1, · · · ,𝑚𝑠 are pairwise coprime, their greatest common divisor is 1, so their least common multiple is
𝑚1 · · ·𝑚𝑠/1 =𝑚1 · · ·𝑚𝑠 . Hence,𝑚1 · · ·𝑚𝑠 | 𝑎, and 𝑎 = 0.

For surjectivity, let (𝑟1, · · · , 𝑟𝑠 ) ∈ Z𝑚1 × · · · ×Z𝑚𝑠
be arbitrary. Define 𝑁 B 𝑚1 · · ·𝑚𝑠 and 𝑁𝑖 B 𝑁 /𝑚𝑖 for each 𝑖 = 1, · · · ,𝑚.

Because 𝑚1, · · · ,𝑚𝑠 are pairwise coprime, they comprise disjoint prime factors; hence, 𝑁𝑖 and 𝑚𝑖 also comprise disjoint
prime factors, and gcd(𝑁𝑖 ,𝑚𝑖 ) = 1. This implies that �̃�𝑖 B 𝑁𝑖 mod𝑚𝑖 ∈ U (Z𝑚𝑖

). Let 𝑏𝑖 ∈ Z𝑚𝑖
be the multiplicative inverse

of 𝑁𝑖 , so that 𝑐𝑖 B 𝑟𝑖𝑏𝑖 satisfies 𝑐𝑖 · 𝑁𝑖 ≡ 𝑟𝑖 (mod 𝑚𝑖 ). Let

𝑎 B
𝑠∑︁
𝑗=1

𝑐 𝑗𝑁 𝑗 .

Note that𝑚𝑖 | 𝑁 𝑗 whenever 𝑖 ≠ 𝑗 by construction. Then,

𝑎 mod𝑚𝑖 =

(
𝑠∑︁
𝑗=1

𝑐 𝑗𝑁 𝑗 mod𝑚𝑖

)
mod𝑚𝑖 = 𝑐𝑖𝑁𝑖 mod𝑚𝑖 = 𝑟𝑖 .

Hence, 𝜙 (𝑎) = (𝑟1, · · · , 𝑟𝑠 ). The proof is finished. □

Lemma 5.21. Suppose𝑚1, · · · ,𝑚𝑠 ∈ Z≥2 are pairwise coprime. Then, 𝜙 (𝑚1 · · ·𝑚𝑠 ) = 𝜙 (𝑚1) · · ·𝜙 (𝑚𝑠 ); that is, 𝜙 is weakly
multiplicative.

Proof. Observe that

𝜙 (𝑚1 · · ·𝑚𝑠 ) = |U (Z𝑚1 · · ·𝑚𝑠
) |

= |U (Z𝑚1 × · · · × Z𝑚𝑠
) | (Theorem 5.20)

= |U (Z𝑚1 ) × · · · × U (Z𝑚𝑠
) | (Proposition 5.19)

= |U (Z𝑚1 ) | × · · · × |U (Z𝑚𝑠
) | (Counting a Cartesian product)

= 𝜙 (𝑚1) · · ·𝜙 (𝑚𝑠 ).

The proof is complete. □

Proposition 5.22. Let 𝑝 be a prime and suppose 𝑠 ∈ Z>0. Then, 𝜙 (𝑝𝑠 ) = 𝑝𝑠 − 𝑝𝑠−1.

Proof. Let 𝑎 ∈ Z𝑝𝑠 be arbitrary. Then,

𝑎 ∉ U (Z𝑝𝑠 ) ⇐⇒ gcd(𝑎, 𝑝𝑠 ) > 1
⇐⇒ ∃𝑑 ∈ Z≥2 such that 𝑑 | 𝑎 and 𝑑 | 𝑝𝑠
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⇐⇒ ∃𝑖 ∈ Z ∩ [1, 𝑠] such that 𝑝𝑖 | 𝑎
⇐⇒ ∃𝑞 ∈ Z ∩ [0, 𝑝𝑠−1) such that 𝑎 = 𝑝𝑞.

There are exactly 𝑝𝑠−1 such 𝑞 B 𝑎/𝑝 ∈ Z∩[0, 𝑝𝑠−1). Hence, |Z𝑝𝑠 \U (Z𝑝𝑠 ) | = |{𝑎 ∈ Z𝑝𝑠 | ∃𝑞 ∈ Z∩[0, 𝑝𝑠−1) such that 𝑎 = 𝑝𝑞}|
= |Z ∩ [0, 𝑝𝑠−1) | = 𝑝𝑠−1. Hence, |U (Z𝑝𝑠 ) | = |Z𝑝𝑠 | − |U (Z𝑝𝑠 ) | = 𝑝𝑠 − 𝑝𝑠−1. □

Corollary 5.23. Suppose 𝑛 ∈ Z≥2 has prime factorization 𝑛 = 𝑝
𝑟1
1 · · · 𝑝

𝑟𝑠
𝑠 , where 𝑝1, · · · , 𝑝𝑠 are distinct primes and 𝑟1, · · · ,

𝑟𝑠 ∈ Z>0. Then, 𝜙 (𝑛) = ∏𝑛
𝑖=1 (𝑝

𝑠𝑖
𝑖
− 𝑝𝑠𝑖−1

𝑖
) = 𝑛 ·∏𝑛

𝑖=1 (1 − 1/𝑝𝑖 ).

6 Constructing Rings and Fields

6.1 The Field ofQuotients of an Integral Domain

We will redo the construction of Q from Z in real analysis in the context of a more general integral domain 𝐷 . That is, we
set out to construct, in a sense, the “smallest field containing 𝐷 .”

Throughout this section, 𝐷 shall refer to a given integral domain. We consider the format fractions

𝑆 = {(𝑎, 𝑏) ∈ 𝐷 × 𝐷 | 𝑏 ≠ 0},

on which we define the equivalence relation ∼ via

(𝑎, 𝑏) ∼ (𝑐, 𝑑) ⇐⇒ 𝑎𝑑 = 𝑏𝑐.

Proposition 6.1. ∼ is an equivalence relation.

Proof. Let 𝑎, 𝑐, 𝑒 ∈ 𝐷 and 𝑏, 𝑑, 𝑓 ∈ 𝐷∗. Reflexivity is shown by (𝑎, 𝑏) ∼ (𝑎, 𝑏) because 𝑎𝑏 = 𝑏𝑎 in a commutative ring 𝐷 .
Symmetry is justified by noting (𝑎, 𝑏) ∼ (𝑐, 𝑑) implies 𝑎𝑑 = 𝑏𝑐 , so 𝑐𝑏 = 𝑑𝑎 and (𝑐, 𝑑) ∼ (𝑎, 𝑏). Lastly, ∼ is transitive because
(𝑎, 𝑏) ∼ (𝑐, 𝑑) and (𝑐, 𝑑) ∼ (𝑒, 𝑓 ) imply 𝑎𝑑 = 𝑏𝑐 and 𝑐 𝑓 = 𝑑𝑒 . Multiplying both the two equation gives 𝑎𝑑𝑐 𝑓 = 𝑏𝑐𝑑𝑒 , or
𝑐𝑑 (𝑎𝑓 − 𝑏𝑒) = 0. Because 𝑐, 𝑑 ≠ 0, 𝑐𝑑 ≠ 0 and 𝑎𝑓 − 𝑏𝑒 = 0, so 𝑎𝑓 = 𝑏𝑒 and (𝑎, 𝑏) ∼ (𝑒, 𝑓 ). □

We will denote the equivalence classes of an element (𝑎, 𝑏) of 𝑆 as [(𝑎, 𝑏)], and the collection of all such equivalence classes
as 𝐹 = {[(𝑎, 𝑏)] | (𝑎, 𝑏) ∈ 𝑆}. We will now define our usual addition and multiplication.

Proposition 6.2. There exist unique binary operations + and · over 𝐹 such that

[(𝑎, 𝑏)] + [(𝑐, 𝑑)] = (𝑎𝑑 + 𝑏𝑐, 𝑏𝑑) and [(𝑎, 𝑏)] · [(𝑐, 𝑑)] = [(𝑎𝑐, 𝑏𝑑)]

for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐷 .

Proof. Suppose 𝑎, 𝑎′, 𝑐, 𝑐′ ∈ 𝐷 and 𝑏, 𝑏′, 𝑑, 𝑑 ′ ∈ 𝐷∗ are such that (𝑎, 𝑏) ∼ (𝑎′, 𝑏′) and (𝑐, 𝑑) ∼ (𝑐′, 𝑑 ′). Then, 𝑎𝑏′ = 𝑎′𝑏 and
𝑐′𝑑 = 𝑐𝑑 ′. Hence, (𝑎𝑏′−𝑎′𝑏)𝑑𝑑 ′ = 𝑏𝑏′ (𝑐′𝑑 −𝑐𝑑 ′), or 𝑎𝑏′𝑑𝑑 ′ +𝑏𝑏′𝑐𝑑 ′ = 𝑎′𝑏𝑑𝑑 ′ +𝑏𝑏′𝑐′𝑑 . Hence, (𝑎𝑑 +𝑏𝑐)𝑏′𝑑 ′ = (𝑎′𝑑 ′ +𝑏′𝑐′)𝑏𝑑 ,
so (𝑎𝑑 + 𝑏𝑐, 𝑏𝑑) ∼ (𝑎′𝑑 ′ + 𝑏′𝑐′, 𝑏′𝑑 ′). This shows + is well-defined.

Now, 𝑎𝑏′ = 𝑎′𝑏 and 𝑐′𝑑 = 𝑐𝑑 ′ also imply 𝑎𝑏′𝑐𝑑 ′ = 𝑎′𝑏𝑐′𝑑 , or (𝑎𝑐) (𝑏′𝑑 ′) = (𝑎′𝑐′) (𝑏𝑑), so (𝑎𝑐, 𝑏𝑑) ∼ (𝑎′𝑐′, 𝑏′𝑑 ′). Therefore, · is
well-defined. □

Now, equipped with the set 𝐹 with binary operations + and ·, we are ready to show that it is a field.

Theorem 6.3. (𝐹, +, ·) is a field. Further, there exists an injective homomorphism of rings from 𝐷 to 𝐹 .

Proof. That 𝐹 is a field follows routine verification. One needs to verify that (i) + is associative and commutative, (ii) · is
associative, and (iii) the distributive laws hold. In addition, one needs to show that [(0, 1)] is the identity in (𝐹, +), [(−𝑎, 𝑏)]
is the additive inverse of [(𝑎, 𝑏)], [(1, 1)] is the identity in (𝐹 ∗, ·), and [(𝑏, 𝑎)] is the multiplicative identity of [(𝑎, 𝑏)] ∈ 𝐹 ∗.
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Obviously, the map 𝜄 : 𝐷 → 𝐹 by 𝑘 ↦→ [(𝑘, 1)] is an injective homomorphism of rings. □

Definition 6.4. Let 𝐷 be an integral domain. The field of quotients of 𝐷 is the field 𝐹 as constructed above.

If we apply this construction on what is already a field, we recover the “same” field back:

Corollary 6.5. A field 𝐾 is isomorphic to its field of quotients 𝐹 via the isomorphism 𝜙 : 𝐾 → 𝐹, 𝑥 → [(𝑥, 1)].

Proof. Let 𝑎 ∈ 𝐾 and 𝑏 ∈ 𝐾∗ be arbitrary. Then, 𝜙 (𝑎𝑏−1) = [(𝑎, 𝑏)]. □

We now make precise the notion that 𝐹 is the “smallest” field “containing” 𝐷 .

Theorem 6.6. Suppose 𝐷 is an integral domain and 𝐾 an arbitrary field. Let 𝐹 be the field of quotients of 𝐷 and 𝜄 : 𝐷 →
𝐹 the injective homomorphic embedding. If 𝜙 : 𝐷 → 𝐾 is an injective homomorphism, then there exists a unique injective
homomorphism 𝜙 : 𝐹 → 𝐾 such that 𝜙 ◦ 𝜄 = 𝜙 .

Proof. Let (𝑎, 𝑏) ∈ 𝑆 . Note that [(𝑎, 𝑏)] = [(𝑎, 1)] · [(1, 𝑏)] = 𝜄 (𝑎) · 𝜄 (𝑏)−1. Now,

𝜙 ( [(𝑎, 𝑏)]) = 𝜙 (𝜄 (𝑎) · 𝜄 (𝑏)−1) = 𝜙 (𝜄 (𝑎)) · 𝜙 (𝜄 (𝑏))−1 = 𝜙 (𝑎) · 𝜙 (𝑏)−1.

We claim the equation above is well-defined and uniquely defines 𝜙 . First, note that 𝑏 ≠ 0 implies 𝜙 (𝑏) ≠ 0, so 𝜙 (𝑏)−1

exists. Now suppose (𝑎, 𝑏) ∼ (𝑎′, 𝑏′), or 𝑎𝑏′ = 𝑏𝑎′. Then, 𝜙 (𝑎)𝜙 (𝑏′) = 𝜙 (𝑎′)𝜙 (𝑏), or 𝜙 (𝑎) · 𝜙 (𝑏)−1 = 𝜙 (𝑎′) · 𝜙 (𝑏′)−1 by the
commutativity of (𝐾∗, ·). Indeed, for an arbitrary 𝑎, 𝜙 (𝜄 (𝑎)) = 𝜙 ( [(𝑎, 1)]) = 𝜙 (𝑎) · 𝜙 (1)−1 = 𝜙 (𝑎) · 1 = 𝜙 (𝑎). □

6.2 Rings of Polynomials andTheir Factorization

One may recall from linear algebra that polynomials with coefficients in a given field form a vector space of infinite dimen-
sions. One may relax the restriction of field coefficients to ring coefficients. The resultant structure of the polynomials is no
longer a vector space, but it is a ring in its own right.

We could view univariate polynomials with coefficients in a ring 𝑅 as the direct sum

∞⊕
𝑖=0

𝑅,

but this takes away the algebraic structure inherent in polynomials. Rather, we resort to the following formal sum:

Definition 6.7. Let 𝑅 be a ring and 𝑥 an indeterminate variable. The polynomials in 𝑥 with coefficients in 𝑅 are defined as
the following collection of formal series:

𝑅 [𝑥] B
{ ∞∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 | all but finitely many 𝑎𝑖 ’s are non-zero

}
,

where 𝑥 is assumed to follow the axioms of the ring 𝑅.

While we may freely use the algebraic structure of 𝑅 for 𝑥 , one should bear in mind the following nuance: it becomes
difficult to ask what a statement like “𝑓 (𝑥) = 0” means: is it that 𝑓 (𝑥) is the identically 0 polynomial, or is it a question
about the zeros of the polynomial 𝑓 ? We avoid qualifiers because 𝑥 is not a variable. Therefore, to avoid ambiguity, we only
ever refer to the latter situation as “𝑥 is a zero of 𝑓 .”

One notes the following obvious statement:

Proposition 6.8. Let 𝑅 be a ring and suppose {𝑎𝑖 }∞𝑖=0 is a sequence in 𝑅. Then, all but finitely many 𝑎𝑖 ’s are non-zero if and
only if some tail of {𝑎𝑖 }∞𝑖=0 is identically zero.
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It is therefore natural to ask how one may write or denote such a polynomial. It suffices to omit the longest identically zero
tail. We therefore write 𝑓 (𝑥) = 𝑥 instead of

𝑓 (𝑥) =
∞∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 , where 𝑎𝑖 =

{
1, if 𝑖 = 1,
0, otherwise.

The same train of thought gives rise to the degree of a polynomial.

Definition 6.9. Let 𝑅 be a ring and suppose 𝑓 (𝑥) ∈ 𝑅 [𝑥] where 𝑓 (𝑥) = ∑∞
𝑖=0 𝑎𝑖𝑥

𝑖 . The degree of 𝑓 (𝑥), denoted as deg 𝑓 , is
defined as max{𝑛 ∈ Z≥0 | 𝑎𝑛 ≠ 0}. Note that deg 0 = −∞ trivially.

The choice of deg 0 B −∞ is made so that we have the following:

Proposition 6.10. Let 𝑅 be a ring and suppose 𝑓 , 𝑔 ∈ 𝑅 [𝑥]. Then,

deg(𝑓 + 𝑔) ≤ max{deg 𝑓 , deg𝑔}, where “=” holds if deg 𝑓 ≠ deg𝑔
deg(𝑓 · 𝑔) = deg 𝑓 + deg𝑔.

This is quite an intuitive statement: 𝑥 plus 3𝑥2 has degree max{1, 2} = 2 and (𝑥 + 1) · (2𝑥) has degree 1 + 1 = 2. One nuance
is that the “=” condition is not an “only if” condition: the equality could hold even if deg 𝑓 = deg𝑔, but a more detailed
discussion is necessary.

We now turn from the definition to the inherent structure of such polynomials: the pointwise addition and multiplication
on polynomials are nicely defined in such a way that gives rise to the structure of a ring.

Proposition 6.11. Let 𝑅 be a ring. Then, (𝑅 [𝑥], +, ·) is a ring, where + and · denote pointwise operations of addition and
multiplication on polynomials by

(𝑓 + 𝑔) (𝑥) B 𝑓 (𝑥) + 𝑔(𝑥),
(𝑓 · 𝑔) (𝑥) B 𝑓 (𝑥) · 𝑔(𝑥)

for all 𝑓 , 𝑔 ∈ 𝑅 [𝑥].

The routine proof of checking the axioms is needed though by no means challenging, omitted here for brevity. Note that
one can think directly in terms of the coefficients. If 𝑓 (𝑥) = ∑

𝑎𝑖𝑥
𝑖 and 𝑔(𝑥) = ∑

𝑏𝑖𝑥
𝑖 , then

𝑓 (𝑥) + 𝑔(𝑥) =
∑︁
(𝑎𝑖 + 𝑏𝑖 )𝑥𝑖 and 𝑓 (𝑥) · 𝑔(𝑥) =

∑︁
𝑐𝑖𝑥

𝑖 ,

where 𝑐𝑖 = 𝑎0𝑏𝑖 + 𝑎1𝑏𝑖−1 + · · · + 𝑎𝑖−1𝑏1 + 𝑎𝑖𝑏0.

The idea of division is so powerful that it spans our elementary education to college. The long division algorithm is another
such example that has wide applications in our discussions.

We will henceforth restrict our attentions to fields rather than general rings. The main reason is that without a field, we
could have

(𝑥 − 1) (𝑥 + 1) = (𝑥 − 3) (𝑥 + 3),

if we are working in a ring where 1 = 9 like Z8. As we will later see, this is guaranteed not to occur in a field. At the same
time, we can’t divide by anything unless it’s a unit.

Proposition 6.12. Let 𝐹 be a field. Then, 𝐹 [𝑥] is an integral domain.

Proof. Suppose 𝑓 (𝑥) · 𝑔(𝑥) = 0, where 𝑓 (𝑥), 𝑔(𝑥) ∈ 𝐹 [𝑥] and 𝑓 (𝑥) ≠ 0. Then, deg 𝑓 + deg𝑔 = deg 0 = −∞, where deg 𝑓 ≥ 0.
The only possibility is deg𝑔 = −∞; that is, 𝑔(𝑥) = 0. □
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Theorem 6.13 (Long Division). Let 𝐹 be a field and suppose 𝑓 (𝑥) ∈ 𝐹 [𝑥] and 𝑔(𝑥) ∈ 𝐹 [𝑥]\{0}. Then, there exist unique
polynomials 𝑞(𝑥), 𝑟 (𝑥) ∈ 𝑅 [𝑥], where deg 𝑟 < deg𝑔, such that 𝑓 (𝑥) = 𝑔(𝑥) · 𝑞(𝑥) + 𝑟 (𝑥).

Proof. Suppose 𝑓 (𝑥) = 𝑎0 + · · · + 𝑎𝑛𝑥𝑛 and 𝑔(𝑥) = 𝑏0 + · · · + 𝑏𝑚𝑥𝑚 , where 𝑎𝑛 ≠ 0 and 𝑏𝑚 ≠ 0.

Existence. If deg 𝑓 < deg𝑔, then we may simply take 𝑞(𝑥) = 0 and 𝑟 (𝑥) = 𝑓 (𝑥). Otherwise, we consider the following
recursive procedure:

• While deg 𝑓 ≥ deg𝑔, repeat:

– Let 𝑞(𝑥) B 𝑎𝑛𝑏
−1
𝑚 · 𝑥𝑛−𝑚 and 𝑟 (𝑥) = 𝑓 (𝑥) − 𝑔(𝑥) · 𝑞(𝑥);

– Observe that
𝑔(𝑥) · 𝑞(𝑥) = (𝑏0 + · · · + 𝑏𝑚𝑥𝑚) ·

𝑎𝑛

𝑏𝑚
𝑥𝑛−𝑚 =

𝑏0𝑎𝑛
𝑏𝑚

𝑥𝑛−𝑚 + · · · + 𝑎𝑛𝑥𝑛 ;

that is, deg(𝑔 · 𝑞) = 𝑛 = deg 𝑓 and 𝑔 · 𝑞 have the same leading coefficient as 𝑓 . Then, 𝑟 (𝑥) must have degree
strictly less than 𝑛;

– Update 𝑓 (𝑥) to be 𝑟 (𝑥).

• Output 𝑞(𝑥) as the sum of all such 𝑞(𝑥)’s above and 𝑟 (𝑥) as the final 𝑟 (𝑥).

Indeed, given

𝑓 = 𝑔 · 𝑞1 + 𝑟1,

𝑟1 = 𝑔 · 𝑞2 + 𝑟2,

...

𝑟𝑠−1 = 𝑔 · 𝑞𝑠 + 𝑟𝑠 ,

one plugs back to obtain

𝑟𝑠−1 = 𝑔 · 𝑞𝑠 + 𝑟𝑠 ,
𝑟𝑠−2 = 𝑔 · 𝑞𝑠−1 + 𝑔 · 𝑞𝑠 + 𝑟𝑠 = 𝑔 · (𝑞𝑠−1 + 𝑞𝑠 ) + 𝑟𝑠 ,

...

𝑟1 = 𝑔 · (𝑞2 + · · · + 𝑞𝑠 ) + 𝑟𝑠 ,
𝑓 = 𝑔 · (𝑞1 + 𝑞2 + · · · + 𝑞𝑠 )︸                  ︷︷                  ︸

𝑞 (𝑥 )

+ 𝑟𝑠︸︷︷︸
𝑟 (𝑥 )

.

This validates the existence of such 𝑞(𝑥) and 𝑟 (𝑥).

Uniqueness. Suppose now that 𝑓 = 𝑔 · 𝑞 + 𝑟 = 𝑔 · 𝑞′ + 𝑟 ′; that is, 𝑔 · (𝑞 − 𝑞′) = 𝑟 ′ − 𝑟 . Note that deg(𝑔 · (𝑞 − 𝑞′)) = deg𝑔
+ deg(𝑞 − 𝑞′), while deg(𝑟 ′ − 𝑟 ) ≤ max{deg 𝑟 ′, deg 𝑟 } < deg𝑔. Unless deg(𝑞 − 𝑞′) = −∞, we cannot possibly obtain the
supposed equality. Hence, 𝑞 = 𝑞′, which forces 𝑟 ′ − 𝑟 = 𝑔 · 0 = 0, and this implies 𝑟 = 𝑟 ′. The proof is now complete. □

Corollary 6.14. Let 𝐹 be a field, 𝑓 (𝑥) ∈ 𝐹 [𝑥]\{0}, and 𝛼 ∈ 𝐹 . Then, 𝛼 is a zero of 𝑓 (𝑥) if and only if 𝑓 (𝑥) = (𝑥 − 𝛼) · 𝑔(𝑥)
for some non-zero 𝑔(𝑥) ∈ 𝐹 [𝑥]\{0}.

Proof. Suppose𝛼 is a zero of 𝑓 (𝑥). Let 𝑓 (𝑥) = (𝑥−𝛼) ·𝑞(𝑥)+𝑟 (𝑥), where𝑞(𝑥), 𝑟 (𝑥) ∈ 𝐹 [𝑥] are the quotient and the remainder
from the division algorithm. Then, 𝑟 (𝑥) has degree at most 0, which must be a constant 𝑐 . Then, 𝑓 (𝛼) = 0 · 𝑞(𝛼) + 𝑐 = 𝑐 = 0,
so 𝑟 (𝑥) = 𝑐 = 0. Hence, 𝑓 (𝑥) = (𝑥 − 𝛼) · 𝑔(𝑥). If 𝑔(𝑥) were 0, then 𝑓 (𝑥) = 0 also, a contradiction. We may therefore take
𝑞(𝑥) as 𝑔(𝑥).
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Conversely, let 𝑓 (𝑥) = (𝑥 − 𝛼) · 𝑔(𝑥) for some 𝑔(𝑥) ∈ 𝐹 [𝑥]. Then, 𝑓 (𝛼) = 0 · 𝑔(𝛼) = 0. The proof is complete. □

This allows us to recover the following upper-bound on the number of zeros of a polynomial over a field.

Corollary 6.15. Suppose 𝑓 (𝑥) ∈ 𝐹 [𝑥]\{0} is a non-zero polynomial over a field 𝐹 . Then, 𝑓 (𝑥) has no more zeros than
deg 𝑓 .

Proof. Suppose 𝛼1, · · · , 𝛼𝑛 ∈ 𝐹 are distinct zeros of 𝑓 (𝑥). We will show inductively that for all 𝑖 ∈ {1, · · · , 𝑛}, there exists
non-zero 𝑔𝑖 (𝑥) ∈ 𝐹 [𝑥]\{0} such that 𝑓 (𝑥) = (𝑥 − 𝛼1) · · · (𝑥 − 𝛼𝑖 ) · 𝑔𝑖 (𝑥).

Base case. Because 𝛼1 is a zero of 𝑓 (𝑥), 𝑓 (𝑥) = (𝑥 − 𝛼1) · 𝑔1 (𝑥) for some 𝑔1 (𝑥) ∈ 𝐹 [𝑥]\{0} by the preceding Corollary.

Inductive case. Let 𝑖 ∈ {2, · · · , 𝑛} and suppose inductively that 𝑓 (𝑥) = (𝑥 − 𝛼1) · · · (𝑥 − 𝛼𝑖−1) · 𝑔𝑖−1 (𝑥) for some 𝑔𝑖−1 (𝑥) ∈
𝐹 [𝑥]\{0}. Note that evaluating the polynomial (𝑥 − 𝛼1) · · · (𝑥 − 𝛼𝑖−1) at 𝑥 = 𝛼𝑖 does not yield 0 because non-zero elements
of 𝐹 are multiplied. Then, because 𝐹 is an integral domain, 𝑓 (𝛼𝑖 ) = 0 implies 𝑔𝑖−1 (𝛼𝑖 ) = 0; that is, 𝛼𝑖 is a zero of 𝑔𝑖−1 (𝑥). By
the preceding corollary, 𝑔𝑖−1 (𝑥) = (𝑥 − 𝛼𝑖 ) · 𝑔𝑖 (𝑥) for some 𝑔𝑖 (𝑥) ∈ 𝐹 [𝑥]\{0}. Therefore, 𝑓 (𝑥) = (𝑥 − 𝛼1) · · · (𝑥 − 𝛼𝑖 ) · 𝑔𝑖 (𝑥).

Hence, in particular, 𝑓 (𝑥) = (𝑥 − 𝛼1) · · · (𝑥 − 𝛼𝑛) · 𝑔𝑛 (𝑥) for some 𝑔𝑛 (𝑥) ∈ 𝐹 [𝑥]\{0}. Because 𝑔𝑛 (𝑥) ≠ 0, we see that 𝑓 (𝑥)
has degree at least 𝑛. □

The last corollary of the division algorithm is extremely powerful. It allows us to assert that the units of a field always form
a cyclic multiplicative group. This statement would otherwise be extremely hard to prove.

Corollary 6.16. Every finite subgroup of the multiplicative group (𝐹 ∗, ·) of a field 𝐹 is cyclic.

Proof. Observe that (𝐹 ∗, ·) is a finitely generated abelian group, which admits an invariant factorization Z𝑑1 × · · · × Z𝑑𝑛 via
𝜙 : (𝐺, ·) → (Z𝑑1 × · · · × Z𝑑𝑛 , +). Suppose for the sake of contradiction that 𝑛 ≥ 2. Then, |⟨𝜙−1 (1, 0, · · · , 0)⟩| has degree 𝑑1.
Further, for each 𝑖 ∈ Z𝑑1 ,

|⟨𝜙−1 (𝑖, 𝑑2/𝑑1, 0, · · · , 0)⟩| = |⟨(𝑖, 𝑑2/𝑑1, 0, · · · , 0)⟩|
= lcm(𝑑1/gcd(𝑖, 𝑑1), 𝑑1, 1, · · · , 1)
= 𝑑1. (𝑑1/gcd(𝑖, 𝑑1) divides 𝑑1)

We have identified 1 + 𝑑1 > 𝑑1 zeros of 𝑔𝑛 − 1 ∈ 𝐹 [𝑔], which is impossible. Hence, 𝑛 = 1 and (𝐹 ∗, ·) ≃ (Z𝑑1 , +) is cyclic. □

In addition to these powerful corollaries, the division algorithm also lends us additional machinery to talk about factoring
polynomials.

Definition 6.17. A polynomial 𝑓 (𝑥) ∈ 𝐹 [𝑥] is said to be reducible if there exist 𝑔(𝑥), ℎ(𝑥) ∈ 𝐹 [𝑥] with max{deg𝑔, degℎ} <
deg 𝑓 such that 𝑓 (𝑥) = 𝑔(𝑥) · ℎ(𝑥). Otherwise, it is said to be irreducible.

The versatility of polynomials, when extended to general fields, is manifold. For one, it is obvious that
√

2 ∈ Q if and only if
𝑥2−2 ∈ Q[𝑥] is reducible. Hence, questions about rationality are really just questions about the reducibility of polynomials
in Q[𝑥].

Proposition 6.18. Let 𝑓 (𝑥) ∈ 𝐹 [𝑥] have degree deg 𝑓 ∈ {2, 3}. Then, 𝑓 (𝑥) is reducible if and only if it has a zero.

Proof. Suppose first that 𝑓 (𝑥) is reducible as𝑔(𝑥) ·ℎ(𝑥), with max{deg𝑔, degℎ} < deg 𝑓 . Without loss of generality, suppose
deg𝑔 ≤ degℎ. Because deg𝑔 + degℎ = deg 𝑓 , it follows that deg𝑔 = 1. Hence, 𝑔(𝑥) = 𝑎 · 𝑥 + 𝑏 for some 𝑎 ∈ 𝐹 ∗ and 𝑏 ∈ 𝐹 ,
and 𝑓 (−𝑏/𝑎) = (𝑎 · (−𝑏/𝑎) + 𝑏) · 𝑔(−𝑏/𝑎) = 0 · 𝑔(−𝑏/𝑎) = 0.

Conversely, suppose 𝑓 (𝛼) = 0 for some𝛼 ∈ 𝐹 . Then, 𝑓 (𝑥) = (𝑥−𝛼)·𝑔(𝑥) for some𝑔(𝑥) ∈ 𝐹 [𝑥]. Because deg𝑔 = deg 𝑓 −1 < 1,
the factorization above exemplifies the reducibility of 𝑓 (𝑥). □
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Below, we provide a powerful criterion for factoring polynomials in Z[𝑥], due to Gauss.

Lemma 6.19 (Gauss). Let 𝑓 (𝑥) ∈ Z[𝑥]. Then, 𝑓 (𝑥) reduces to a product 𝑔(𝑥) · ℎ(𝑥) of polynomials 𝑔(𝑥), ℎ(𝑥) ∈ Q[𝑥] of
degree 𝑟 and 𝑠 if and only if 𝑓 (𝑥) reduces to a product 𝑔′ (𝑥) · ℎ′ (𝑥) of polynomials 𝑔′ (𝑥), ℎ′ (𝑥) ∈ Z[𝑥] of degree 𝑟 and 𝑠 .

Some machinery is necessary for a detailed proof.

Definition 6.20. The content of a polynomial 𝑓 (𝑥) ∈ Z[𝑥], denoted as cont(𝑓 (𝑥)), is defined as the greatest common
divisor of the coefficients of 𝑓 (𝑥). Such 𝑓 (𝑥) is said to be primitive if cont(𝑓 (𝑥)) = 1.

Proposition 6.21. Let 𝑝 be a prime and 𝑓 (𝑥), 𝑔(𝑥) ∈ Z[𝑥]. If 𝑝 divides all coefficients of the product 𝑓 (𝑥) · 𝑔(𝑥), then 𝑝
divides all coefficients of 𝑓 (𝑥) or 𝑝 divides all coefficients of 𝑔(𝑥).

Proof. Suppose 𝑓 (𝑥) = 𝑎0+· · ·+𝑎𝑟𝑥𝑟 , 𝑔(𝑥) = 𝑏0+· · ·+𝑏𝑠𝑥𝑠 , and 𝑃 (𝑥) = 𝑓 (𝑥) ·𝑔(𝑥) = 𝑐0+· · ·+𝑐𝑛𝑥𝑛 . Assume for contradiction
that 𝑝 neither divides all 𝑎0, · · · , 𝑎𝑟 nor divides all 𝑏0, · · · , 𝑏𝑠 . Let 𝑖 ∈ {1, · · · , 𝑟 } and 𝑗 ∈ {1, · · · , 𝑠} be the minimal value such
that 𝑝 ∤ 𝑎𝑖 and 𝑝 ∤ 𝑏 𝑗 respectively.

Note that
𝑝 | 𝑐𝑖+𝑗 ⇒ 𝑝 | (𝑎0𝑏𝑖+𝑗 + · · ·︸       ︷︷       ︸

part (i)

+ 𝑎𝑖𝑏 𝑗 + · · · + 𝑎𝑖+𝑗𝑏0︸       ︷︷       ︸
part (ii)

),

where each 𝑎0, · · · , 𝑎𝑖−1 in part (i) is divisible by 𝑝 and each 𝑏 𝑗−1, · · · , 𝑏0 in part (ii) is divisible by 𝑝 as well. Because 𝑝 divides
the entire sum, this compels 𝑝 | 𝑎𝑖𝑏 𝑗 ; that is, 𝑝 | 𝑎𝑖 or 𝑝 | 𝑎 𝑗 , a contradiction. □

Corollary 6.22. Primitive polynomials are closed under multiplication.

Proof. Let 𝑓 (𝑥), 𝑔(𝑥) ∈ Z[𝑥] be primitive. Let 𝑑 be the greatest common divisor of the coefficients of the product 𝑓 (𝑥) ·𝑔(𝑥).
If 𝑑 > 1, then choose an arbitrary prime 𝑝 from the prime factorization of 𝑑 . Note that 𝑝 | 𝑑 divides all coefficients of
𝑓 (𝑥) · 𝑔(𝑥). Then, 𝑝 divides all coefficients of 𝑓 (𝑥) or 𝑝 divides all coefficients of 𝑔(𝑥). But either scenario is absurd, since
𝑓 (𝑥) and 𝑔(𝑥) are both assumed to be primitive. □

Corollary 6.23. The content is multiplicative over Z[𝑥]; that is, cont(𝑓 (𝑥) · 𝑔(𝑥)) = cont(𝑓 (𝑥)) · cont(𝑔(𝑥)) for all
𝑓 (𝑥), 𝑔(𝑥) ∈ Z[𝑥].

Proof. Let 𝑑1 = cont(𝑓 (𝑥)) and 𝑑2 = cont(𝑔(𝑥)). Divide all coefficients of 𝑓 and 𝑔 by 𝑑1 and 𝑑2 respectively to obtain
primitive polynomials 𝑓 (𝑥), 𝑔(𝑥). Then, 𝑓 (𝑥) ·𝑔(𝑥) is primitive as well. Hence, the content of 𝑓 (𝑥) ·𝑔(𝑥) = 𝑑1𝑑2 · 𝑓 (𝑥) ·𝑔(𝑥)
is 𝑑1𝑑2 = cont(𝑓 (𝑥)) · cont(𝑔(𝑥)). □

We finally have the machinery to prove Gauss’ lemma.

Proof. The “if” direction is trivial. For the “only if” direction, suppose 𝑓 (𝑥) ∈ Z[𝑥] is reducible in Q[𝑥] as (𝑎0 + · · · +𝑎𝑛𝑥𝑛) ·
(𝑏0 + · · · +𝑏𝑚𝑥𝑚). Let 𝐴, 𝐵 ∈ Z>0 be such that 𝐴 · 𝑎0, · · · , 𝐴 · 𝑎𝑛, 𝐵 ·𝑏0, · · · , 𝐵 ·𝑏𝑚 ∈ Z. For 𝑖 ∈ {0, · · · , 𝑛} and 𝑗 ∈ {0, · · · ,𝑚},
let 𝛼𝑖 = 𝐴 · 𝑎𝑖 and 𝛽 𝑗 = 𝐵 · 𝑏 𝑗 , set 𝑑𝛼 = gcd(𝛼0, · · · , 𝛼𝑛) and 𝑑𝛽 = gcd(𝛽0, · · · , 𝛽𝑚), and define 𝛼𝑖 = 𝛼𝑖/𝑑𝛼 and 𝛽𝑖 = 𝛽𝑖/𝑑𝛽 .
Then,

𝐴𝐵 · 𝑓 (𝑥) = 𝑑𝛼𝑑𝛽 · (𝛼0 + · · · + 𝛼𝑛𝑥𝑛) · (𝛽0 + · · · + 𝛽𝑚𝑥𝑚).

Now,
𝐴𝐵 · cont(𝑓 (𝑥)) = cont(𝐴𝐵 · 𝑓 (𝑥)) = cont(𝛼0 + · · · + 𝛼𝑛𝑥𝑛) · cont(𝛽0 + · · · + 𝛽𝑚𝑥𝑚) = 𝑑𝛼 · 𝑑𝛽 ,

so 𝑑𝛼 · 𝑑𝛽/𝐴𝐵 = cont(𝑓 (𝑥)) ∈ Z>0 is an integer. Therefore,

𝑓 (𝑥) =
𝑑𝛼 · 𝑑𝛽
𝐴𝐵

(𝛼0 + · · · + 𝛼𝑛𝑥𝑛) · (𝛽0 + · · · + 𝛽𝑚𝑥𝑚) =
(
𝑑𝛼 · 𝑑𝛽 · 𝛼0

𝐴𝐵
+ · · · +

𝑑𝛼 · 𝑑𝛽 · 𝛼𝑛
𝐴𝐵

𝑥𝑛
)
· (𝛽0 + · · · + 𝛽𝑚𝑥𝑚) .

□
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Corollary 6.24. Suppose 𝑓 (𝑥) = 𝑎0 + · · · + 𝑎𝑛−1𝑥
𝑛−1 + 𝑥𝑛 ∈ Z[𝑥] is a monic polynomial with 𝑎0 ≠ 0 and 𝑓 (𝑥) has a zero in

Q. Then, 𝑓 (𝑥) has a zero in Z which divides 𝑎0.

Proof. Suppose 𝛼 ∈ Q is a zero of 𝑓 (𝑥). Then, by the division algorithm we may write 𝑓 (𝑥) = (𝑥 − 𝛼) · 𝑔(𝑥) for some
𝑔(𝑥) ∈ Q[𝑥]. Because 𝑓 (𝑥) is monic, the factorization of 𝑓 (𝑥) in Z[𝑥] guaranteed by Gauss’ lemma must admit the form

𝑓 (𝑥) = (𝑥 −𝑚) · (𝑥𝑛−1 + 𝑐𝑛−2𝑥
𝑛−2 + · · · + 𝑐1𝑥 − 𝑎0/𝑚).

Now,𝑚 is immediately an integral zero. Further,𝑚 | 𝑎0 because −𝑎0/𝑚 ∈ Z. □

We finish this section with another useful criterion for irreducibility.

Proposition 6.25 (Eisenstein). Let 𝑝 be a prime. Suppose 𝑓 (𝑥) = 𝑎0 + · · · + 𝑎𝑛𝑥𝑛 ∈ Z[𝑥] is such that

• 𝑎𝑛 . 0 (mod 𝑝),

• 𝑎0, · · · , 𝑎𝑛−1 ≡ 0 (mod 𝑝), and

• 𝑎0 . 0 (mod 𝑝2),

then 𝑓 (𝑥) is irreducible in Q[𝑥].

Proof. By Gauss’ lemma (Lemma 6.19), it is sufficient to show that 𝑓 (𝑥) is irreducible in Z[𝑥]. Suppose on the contrary that
𝑓 (𝑥) = (𝑏𝑟𝑥𝑟 + · · · + 𝑏0) · (𝑐𝑠𝑥𝑠 + · · · + 𝑐0), where 𝑏𝑟 and 𝑐𝑠 are non-zero and max{𝑟, 𝑠} < 𝑛. Because 𝑝 | 𝑏0𝑐0 but 𝑝2 | 𝑏0𝑐0,
exactly one of 𝑏0 and 𝑐0 is divisible by 𝑝 . Without loss of generality, let 𝑝 | 𝑐0 but 𝑝 ∤ 𝑏0. Similarly, 𝑏𝑟𝑐𝑠 . 0 (mod 𝑝) implies
neither 𝑏𝑟 nor 𝑐𝑠 is divisible by 𝑝 .

Let𝑚 = min{𝑘 ∈ {0, · · · , 𝑠} | 𝑝 ∤ 𝑐𝑘 }. If 𝑟 ≥ 𝑚, then

𝑎𝑚 = 𝑏0𝑐𝑚 +(((((((((
𝑏1𝑐𝑚−1 + · · · + 𝑏𝑚𝑐0 = 𝑏0𝑐𝑚 . 0 (mod 𝑝);

if 𝑟 < 𝑚, then
𝑎𝑚 = 𝑏0𝑐𝑚 +(((((((((

𝑏1𝑐𝑚−1 + · · · + 𝑏𝑟𝑐𝑚−𝑟 = 𝑏0𝑐𝑚 . 0 (mod 𝑝).

The only possibility for𝑚, then, is𝑚 = 𝑛. But this means 𝑛 =𝑚 ≤ 𝑠 ≤ 𝑛, so 𝑠 = 𝑛, a contradiction. □

6.3 Homomorphisms and Factor Rings

We will attempt to generalize the concept of factor groups to rings. Clearly, every additive subgroup of a ring is normal and
we can construct the additive factor group, but there’s no reason to expect it to respect the multiplicative structure of the ring.
It turns out a new criterion is required, which unsurprisingly demands some sort of closure under multiplication.

Definition 6.26. Let 𝑅 be a ring and (𝑁, +) ≤ (𝑅, +) an additive subgroup. Then, 𝑁 is said to be an ideal, denoted as
(𝑁, +, ·) ⊴ (𝑅, +, ·),2 if

𝑟𝑁 B {𝑟𝑛 | 𝑛 ∈ 𝑁 } ⊆ 𝑁 and 𝑁𝑟 B {𝑛𝑟 | 𝑛 ∈ 𝑁 } ⊆ 𝑁

for all 𝑟 ∈ 𝑅.

We already know that addition would be well-defined; we’ll now show that the ideal condition above is precisely what
makes the (additive) cosets compatible under multiplication.

Proposition 6.27. Let 𝑅 be a ring and 𝑁 ⊴ 𝑅. Then, there is a unique binary operation · on the cosets 𝑅/𝑁 such that

(𝑎 + 𝑁 ) · (𝑏 + 𝑁 ) = 𝑎𝑏 + 𝑁

for all 𝑎, 𝑏 ∈ 𝑅. Further, this operation agrees with element-wise multiplication of the sets.
2When unambiguous, we sometimes write simply 𝑁 ⊴ 𝑅.
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Proof. Let 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ 𝑅 with 𝑎 − 𝑎′ ∈ 𝑁 and 𝑏 − 𝑏′ ∈ 𝑁 . Fix 𝑛1, 𝑛2 ∈ 𝑁 such that 𝑎′ = 𝑎 + 𝑛1 and 𝑏′ = 𝑏 + 𝑛2. Then,

𝑎′𝑏′ − 𝑎𝑏 = (𝑎 + 𝑛1) (𝑏 + 𝑛2) − 𝑎𝑏 = 𝑎𝑛2 + 𝑛𝑏 + 𝑛1𝑛2 ∈ 𝑁

by definition.

Finally, observe that the element-wise product is

{(𝑎 + 𝑛1) (𝑏 + 𝑛2) | 𝑛1, 𝑛2 ∈ 𝑁 } = {𝑎𝑏 + 𝑎𝑛2 + 𝑛1𝑏 + 𝑛1𝑛2︸               ︷︷               ︸
surjective from 𝑁 × 𝑁 to 𝑁

| 𝑛1, 𝑛2 ∈ 𝑁 } = 𝑎𝑏 + 𝑁 .

□

Corollary 6.28. Let 𝑅 be a ring and 𝑁 ⊴ 𝑅. Then, (𝑅/𝑁, +, ·) is a ring which is called the factor ring of 𝑅 by 𝑁 .

The proof is omitted; the ring axioms for 𝑅/𝑁 follow immediately from those of 𝑅.

One may recall the heavy use of homomorphisms earlier to get a better understanding of the structures of (factor) groups.
Similarly, we will make use of this machinery which we now develop.

Definition 6.29. Let 𝑅, 𝑅′ be rings. A map 𝜙 : 𝑅 → 𝑅′ is said to be a homomorphism of rings if

𝜙 (𝑎 + 𝑏) = 𝜙 (𝑎) + 𝜙 (𝑏) and 𝜙 (𝑎 · 𝑏) = 𝜙 (𝑎) · 𝜙 (𝑏)

for all 𝑎, 𝑏 ∈ 𝑅.

Every homomorphism of rings is obviously also a homomorphism of the underlying additive groups, so there are no more
ring homomorphisms than there are underlying additive group homomorphisms. It is in general much more restrictive
though. For example, while there are infinitely many homomorphisms from (Z, +) to (Z, +) by mapping 𝑎 ↦→ 𝑛𝑎 for any
fixed 𝑛 ∈ Z≥0, there are only 2 from (Z, +, ·) to (Z, +, ·). This is because 𝜙 (1) = 𝜙 (1)2, or 𝑛 = 𝑛2, compels 𝑛 ∈ {0, 1}.

Homomorphisms of rings share almost identical properties with those of groups. After all, all “homomorphisms” are is a
map that preserves structures.

Proposition 6.30. Let 𝜙 : 𝑅 → 𝑅′ be a homomorphism of rings. Then,

• 𝜙 (0) = 0;

• 𝜙 (−𝑎) = −𝜙 (𝑎) for all 𝑎 ∈ 𝑅;

• If 𝑆 ≤ 𝑅, then 𝜙 [𝑆] ≤ 𝑅′;

• If 𝑆 ′ ≤ 𝑅′, then 𝜙−1 [𝑆 ′] ≤ 𝑅;

• If 𝑅 is unitary, then 𝜙 [𝑅] is unitary and 𝜙 (1𝑅) = 1𝜙 [𝑅 ] ;

• If 𝑁 ⊴ 𝑅, then 𝜙 [𝑁 ] ⊴ 𝜙 [𝑅];

• If 𝑁 ′ ⊴ 𝜙 [𝑅] or 𝑁 ′ ⊴ 𝑅′, then 𝜙−1 [𝑁 ′] ⊴ 𝑅.

We are now ready to state and prove the fundamental homomorphism theorem for rings.

Theorem 6.31 (Fundamental Homomorphism Theorem for Rings). Let 𝜙 : 𝑅 → 𝑅′ be a homomorphism of rings, 𝑁 B ker𝜙 ,
and 𝛾 : 𝑅 → 𝑅/𝑁 via 𝑎 ↦→ 𝑎 + 𝑁 . Then, there exists an injective homomorphism 𝜇 : 𝑅/𝑁 → 𝑅′ such that 𝜙 = 𝜇 ◦ 𝛾 .

Proof. We claim that 𝜇 (𝑎 + 𝑁 ) B 𝜙 (𝑎) is well-defined. If 𝑎 + 𝑁 = 𝑎′ + 𝑁 where 𝑎, 𝑎′ ∈ 𝑅, then 𝑎 − 𝑎′ ∈ 𝑁 and 𝜙 (𝑎 − 𝑎′) = 0,
which implies 𝜙 (𝑎) = 𝜙 (𝑎′).

Let 𝑏 ∈ 𝑅. Then, 𝜇 (𝑎 + 𝑁 ) + 𝜇 (𝑏 + 𝑁 ) = 𝜙 (𝑎) + 𝜙 (𝑏) = 𝜙 (𝑎 + 𝑏) = 𝜇 ((𝑎 + 𝑏) + 𝑁 ) and 𝜇 (𝑎 + 𝑁 ) · 𝜇 (𝑏 + 𝑁 ) = 𝜙 (𝑎) · 𝜙 (𝑏) =
𝜙 (𝑎 · 𝑏) = 𝜇 (𝑎 · 𝑏 + 𝑁 ). □
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6.4 Prime and Maximal Ideals

This section is an extension of the discussion of simple groups and maximally normal subgroups. We begin by showing that
fields are “simple.”

Proposition 6.32. Let 𝑅 be a ring with unity and 𝑁 ⊴ 𝑅. If 𝑁 contains a unit in 𝑅, then 𝑁 = 𝑅.

Proof. Suppose 𝑎 ∈ 𝑁 is a unit. Then, because 𝑎−1 ∈ 𝑅, 𝑎−1𝑎 = 1 ∈ 𝑁 . Hence, for all 𝑟 ∈ 𝑅, 𝑟 · 1 = 𝑟 ∈ 𝑁 . Because 𝑁 ⊆ 𝑅
and 𝑁 ⊇ 𝑅, we have 𝑁 = 𝑅. □

Corollary 6.33. The only ideals of a field are the trivial and improper ideals.

Hence, a field is analogous to a simply group in the sense that it is non-trivial and contains no non-trivial, proper ideal.
We know that 𝐺/𝑁 is simple iff 𝑁 is maximally normal. In the same spirit, we define a maximal ideal of a ring to obtain a
similar result.

Definition 6.34. An ideal 𝑀 of a ring 𝑅 is said to be a maximal ideal if 𝑀 is proper and no proper ideal of 𝑅 properly
contains 𝑀 .

Proposition 6.35. Let 𝑅 be a commutative ring with unity and 𝑀 ⊴ 𝑅. Then, 𝑀 is a maximal ideal of 𝑅 if and only if 𝑅/𝑀
is a field.

Proof. Let 𝑀 ⊳ 𝑅 be maximal. Then, for all 𝑎 ∈ 𝑅\𝑀 , 𝑎𝑅 + 𝑀 is an ideal of 𝑅 properly containing 𝑀 , which must be the
entire ring; that is, 𝑎𝑅 + 𝑀 = 𝑅 ∋ 1. Hence, 𝑎𝑟 +𝑚 = 1 for some 𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀 , which implies 𝑎𝑟 + 𝑀 = 1 + 𝑀 , or
(𝑎 +𝑀) · (𝑟 +𝑀) = 1 +𝑀 . Hence, any non-zero coset 𝑎 +𝑀 ≠ 0 +𝑀 is invertible.

Conversely, let 𝑅/𝑀 be a field with 𝑀 .⊳ 𝐼 ⊳ 𝑅. Then, 𝐼/𝑀 is a non-trivial ideal of 𝑅/𝑀 under the canonical homomorphism
𝛾 : 𝑅 → 𝑅/𝑀 , and hence 𝐼/𝑀 is the entire field 𝑅/𝑀 . Now, for each 𝑟 ∈ 𝑅, there must exist some 𝑖 ∈ 𝐼 and𝑚 ∈ 𝑀 such that
𝑟 − 𝑖 =𝑚 ∈ 𝑀 ⊂ 𝐼 , so 𝑟 ∈ 𝐼 + 𝐼 = 𝐼 . Therefore, 𝑅 ⊆ 𝐼 and 𝐼 ⊆ 𝑅, which implies 𝑅 = 𝐼 . □

We also introduce the notion of a prime ideal. The elementary fact that 𝑝 | 𝑎𝑏 ⇒ 𝑝 | 𝑎 ∨ 𝑝 | 𝑏 can be rewritten as
𝑎𝑏 ∈ 𝑝Z⇒ 𝑎 ∈ 𝑝Z ∨ 𝑏 ∈ 𝑝Z. Such a 𝑝Z is said to be a prime ideal of Z.

Definition 6.36. A proper ideal 𝐼 of a ring 𝑅 is said to be a prime ideal if 𝑎𝑏 ∈ 𝐼 implies 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼 for all 𝑎, 𝑏 ∈ 𝐼 .

Clearly, 𝐼 is zero in 𝑅/𝐼 , so we have the following equivalence immediately.

Corollary 6.37. Let 𝑅 be a commutative ring with unity and 𝐼 ⊴ 𝑅 an ideal. Then, 𝐼 is prime if and only if 𝑅/𝐼 is an integral
domain.

Meanwhile, a field is always an integral domain. Therefore,

Corollary 6.38. Let 𝑅 be a commutative ring with unity and 𝑀 ⊳ 𝑅 a maximal ideal. Then, 𝑀 is a prime ideal.

Now, we turn to a way of formalizing the following idea. A ring with unity has 1, so it has “2” = 1 + 1, “3” = 1 + 1 + 1, etc.
Meanwhile, it also has −1, −2, etc.

Proposition 6.39. Let 𝑅 be a ring with unity. Then, 𝜙 : Z→ 𝑅 via

𝑛 ↦→ “𝑛 · 1” =
{ 𝑛 copies︷      ︸︸      ︷

1 + · · · + 1, if 𝑛 ≥ 0,
−𝜙 (−𝑛), otherwise

is a homomorphism of rings.

Corollary 6.40. A field 𝐹 either has prime characteristic 𝑝 and contains a subfield isomorphic to Z𝑝 or has characteristic
0 and contains a subfield isomorphic to Q.
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We finish this section with some discussions on the ideal structure of 𝐹 [𝑥]. We first introduce the notion of principal ideals,
which correspond with cyclic subgroups.

Definition 6.41. Let 𝑅 be a commutative ring with identity and 𝑎 ∈ 𝑅. The principal ideal generated by 𝑎, denoted as ⟨𝑎⟩,
is defined as 𝑎𝑅 = {𝑎𝑟 | 𝑟 ∈ 𝑅}. An ideal 𝐼 ⊴ 𝑅 is said to be a principal ideal if 𝐼 = ⟨𝑎⟩ for some 𝑎 ∈ 𝑅.

We have seen before that all subgroups of Z are of the form 𝑛Z for some 𝑛 ∈ Z. Because a subring is an additive subgroup,
this implies that all ideals of Z are principal. This is true for 𝐹 [𝑥] as well for a general field 𝐹 .

Definition 6.42. An integral domain 𝐷 is said to be a principal ideal domain (PID) if every ideal of 𝐷 is principal.

Proposition 6.43. The polynomials over a field form a principal ideal domain.

Proof. Suppose 𝐼 is an ideal of 𝐹 [𝑥]. If 𝐼 = {0}, then 𝐼 = ⟨0⟩ trivially. Now suppose 𝐼 is non-trivial, and fix a non-zero
polynomial 𝑔(𝑥) ∈ 𝐼\{0} with minimal degree min deg[𝐼\{0}]. Then, for any 𝑓 (𝑥) ∈ 𝐼 , we may apply the long division
algorithm (Theorem 6.13) to obtain 𝑓 (𝑥) = 𝑔(𝑥) ·𝑞(𝑥) + 𝑟 (𝑥), where 𝑞(𝑥), 𝑟 (𝑥) ∈ 𝐹 [𝑥] with deg 𝑟 < deg𝑔. Because 𝑔(𝑥) ∈ 𝐼 ,
we have 𝑔(𝑥) · 𝑞(𝑥) ∈ 𝐼 , and thus 𝑟 (𝑥) = 𝑓 (𝑥) − 𝑔(𝑥) · 𝑞(𝑥) ∈ 𝐼 . Because deg 𝑟 < deg𝑔 = min deg[𝐼\{0}], we conclude
that 𝑟 (𝑥) = 0. Therefore, for any 𝑓 (𝑥) ∈ 𝐼 , 𝑓 (𝑥) = 𝑔(𝑥) · 𝑞(𝑥) for some 𝑞(𝑥) ∈ 𝐼 . Hence, 𝐼 = 𝑔(𝑥)𝑅 = ⟨𝑔(𝑥)⟩ is a principal
ideal. □

In general, the generator of an ideal in an integral domain, when it exists, is unique up to multiplication by a unit. We
provide a detailed proof for the specific case concerning the domain of polynomials over a field.

Corollary 6.44. Let 𝐹 be a field. Then, for every ideal 𝐼 there exists 𝑓 (𝑥) ∈ 𝐹 [𝑥], unique up to multiplication by a non-zero
constant in 𝐹 , such that 𝐼 = ⟨𝑓 (𝑥)⟩

Proof. If 𝐼 = {0}, then ⟨𝑓 (𝑥)⟩ = 0 implies that 𝑓 (𝑥) · 𝑔(𝑥) = 0 for all 𝑔(𝑥) ∈ 𝐹 [𝑥]. Fixing a particular non-zero 𝑔(𝑥) ∈
𝐹 [𝑥]\{0}, this implies that 𝑓 (𝑥) = 0 by Proposition 6.12.

Suppose now that 𝐼 = ⟨𝑓 (𝑥)⟩ = ⟨𝑔(𝑥)⟩, where 𝑓 (𝑥), 𝑔(𝑥) ∈ 𝐹 [𝑥]\{0}. In particular, 𝑓 (𝑥) ∈ ⟨𝑔(𝑥)⟩ = 𝑔(𝑥)𝑅, so 𝑓 (𝑥) =
𝑔(𝑥) · ℎ(𝑥) for some ℎ(𝑥) ∈ 𝐹 [𝑥]. By symmetry, we can conclude as well that 𝑔(𝑥) = 𝑓 (𝑥) · ℎ′ (𝑥) for some ℎ′ (𝑥) ∈ 𝐹 [𝑥].
Thus, 𝑓 (𝑥) = 𝑓 (𝑥)·ℎ′ (𝑥)·ℎ(𝑥), which implies that 𝑓 (𝑥)·(1−ℎ′ (𝑥)·ℎ(𝑥)) = 0. Because 𝑓 (𝑥) ≠ 0, this implies 1−ℎ′ (𝑥)·ℎ(𝑥) = 0.
Therefore, degℎ + degℎ′ = deg 1 = 0, where degℎ, degℎ′ ∈ Z≥0 ∪ {−∞}. The only possibility is when degℎ = degℎ′ = 0,
which implies ℎ(𝑥) · ℎ′ (𝑥) = 1. Consequently, both ℎ(𝑥) and ℎ′ (𝑥) are non-zero constants. □

Next, we consider the maximal ideals of 𝐹 [𝑥], which allows us to conclude 𝐹 [𝑥]/⟨𝑓 (𝑥)⟩ is a field for certain 𝑓 (𝑥)’s. It turns
out the condition is precisely when 𝑓 (𝑥) is irreducible.

Proposition 6.45. Let 𝐹 be a field and 𝑓 (𝑥) ∈ 𝐹 [𝑥]. Then, ⟨𝑓 (𝑥)⟩ is a maximal ideal of 𝐹 [𝑥] if and only if 𝑓 (𝑥) is irreducible.

Proof. Suppose ⟨𝑓 (𝑥)⟩ is a maximal ideal and let 𝑓 (𝑥) = 𝑔(𝑥) · ℎ(𝑥), where 𝑔(𝑥), ℎ(𝑥) ∈ 𝐹 [𝑥]. Then, ⟨𝑓 (𝑥)⟩ = 𝑓 (𝑥)𝑅 =

𝑔(𝑥)ℎ(𝑥)𝑅 ⊆ 𝑔(𝑥)𝑅 = ⟨𝑔(𝑥)⟩; that is, ⟨𝑓 (𝑥)⟩ ⊆ ⟨𝑔(𝑥)⟩ ⊆ 𝐹 [𝑥]. Then, ⟨𝑔(𝑥)⟩ is either ⟨𝑓 (𝑥)⟩, in which case 𝑔(𝑥) = 𝑓 (𝑥)
and ℎ(𝑥) = 1, or 𝐹 [𝑥] = ⟨1⟩, in which case 𝑔(𝑥) = 1 and ℎ(𝑥) = 𝑓 (𝑥) (by the uniqueness of the long division algorithm). In
either cases, the condition that max{deg𝑔, degℎ} < deg 𝑓 is violated. Therefore, 𝑓 (𝑥) is irreducible.

Conversely, suppose 𝑓 (𝑥) is irreducible. Let 𝑔(𝑥) ∈ 𝐹 [𝑥] be arbitrary, where ⟨𝑓 (𝑥)⟩ ⊆ ⟨𝑔(𝑥)⟩ ⊆ 𝐹 [𝑥]. In particular,
𝑓 (𝑥) ∈ ⟨𝑔(𝑥)⟩, so 𝑓 (𝑥) = 𝑔(𝑥) · ℎ(𝑥) for some ℎ(𝑥) ∈ 𝐹 [𝑥]. Because 𝑓 (𝑥) is irreducible, either 𝑔(𝑥) = 1 or ℎ(𝑥) = 1. If
𝑔(𝑥) = 1, then ⟨𝑔(𝑥)⟩ = 1𝐹 [𝑥] = 𝐹 [𝑥]. If ℎ(𝑥) = 1, then 𝑔(𝑥) = 𝑓 (𝑥) by the uniqueness of long division, so ⟨𝑔(𝑥)⟩ = ⟨𝑓 (𝑥)⟩.
In either cases, we fail to obtain an ideal ⟨𝑔(𝑥)⟩ strictly between ⟨𝑓 (𝑥)⟩ and 𝐹 [𝑥]. The arbitrary choice of 𝑔(𝑥) therefore
implies that ⟨𝑓 (𝑥)⟩ is a maximal ideal. □

Corollary 6.46. Let 𝐹 be a field and 𝑓 (𝑥) ∈ 𝐹 [𝑥]. Then, 𝐹 [𝑥]/⟨𝑓 (𝑥)⟩ is a field if and only if 𝑓 (𝑥) is irreducible.
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7 Extension Fields

7.1 Introduction to Extension Fields

We will work towards a big goal: every polynomial can be forced to have a zero. Why is this any significant? Let’s take
a look at the construction of C. We imagined a “number” 𝑖 out of nowhere, assuming that 𝑖2 = −1. This assumption is
equivalent to saying that 𝑖 is a zero of 𝑥2 + 1 = 0, or simply that 𝑥2 + 1 has a zero, where we can only ever reasonably
assume 𝑥 is over R. After all, C doesn’t exist yet! I’ve always felt a bit iffy that we made it out of nowhere, but we have the
consolation that C[𝑥] is complete. The machinery we develop here will help justify the notion of C.

Definition 7.1. A field 𝐸 is an extension field of a field 𝐹 is 𝐹 ≤ 𝐸.

It is typically sufficient to use the following definition.

Proposition 7.2. A field 𝐸 is isomorphic to an extension field of a field 𝐹 if and only if there exists an injective homomor-
phism from 𝐹 to 𝐸.

To show this, we can simply rename elements of the image of 𝐹 in 𝐸 to their corresponding counterpart in 𝐹 in a one-to-one
manner. An isomorphism really does mean that two fields (rings) are exactly the same. A complete proof is omitted. The
idea is that an extension field 𝐸 of 𝐹 need not contain 𝐹 as sets; it is sufficient to have an injective homomorphism (of
rings/fields) from 𝐹 to 𝐸. Given such an injection, we use it to rename elements of 𝐹 to their images in 𝐸, thus creating
𝐸 ≥ 𝐹 where 𝐹 ≃ 𝐹 .

Theorem 7.3 (Kronecker). Let 𝐹 be a field and suppose 𝑓 (𝑥) ∈ 𝐹 [𝑥] is a non-constant polynomial. Then, there exists an
extension field 𝐸 of 𝐹 such that 𝑓 (𝑥) as a polynomial in 𝐸 [𝑥] has a zero in 𝐸.

Proof. Let𝜙 : 𝐹 → 𝐹 [𝑥]/⟨𝑓 (𝑥)⟩ be the composition of the canonical homomorphism 𝐹 [𝑥] → 𝐹 [𝑥]/⟨𝑓 (𝑥)⟩ and the inclusion
homomorphism 𝐹 → 𝐹 [𝑥]. We claim that 𝜙 is injective. Indeed, let 𝑎, 𝑏 ∈ 𝐹 be such that 𝜙 (𝑎) = 𝜙 (𝑏), or 𝑎 − 𝑏 ∈ ⟨𝑓 (𝑥)⟩.
Then, 𝑎 −𝑏 = 𝑓 (𝑥) ·𝑔(𝑥) for some 𝑔(𝑥) ∈ 𝐹 [𝑥]. Then, 0 ≥ deg(𝑎 −𝑏) = deg 𝑓 + deg𝑔, where deg 𝑓 ≥ 1. The only possibility
is deg𝑔 = −∞, which implies deg(𝑎 − 𝑏) = ∞ and 𝑎 = 𝑏. Therefore, there exists an extension field 𝐸 of 𝐹 .

Let 𝑓 (𝑥) = 𝑎𝑛𝑥
𝑛 + · · · + 𝑎0, where 𝑛 = deg 𝑓 ≥ 1. To show 𝑓 (𝑥) as a polynomial in 𝐸 [𝑥] has a zero in 𝐸, it is sufficient

to prove that 𝑓 has a zero, where 𝑓 ∈ (𝐹 [𝑥]/⟨𝑓 (𝑥)⟩) [𝑥] is the polynomial whose coefficients are the coefficients of 𝑓 (𝑥)
mapped under 𝜙 ; that is, 𝑓 (𝑥) = 𝜙 (𝑎𝑛)𝑥𝑛 + · · · + 𝜙 (𝑎0). We claim that 𝑓 (𝛼) = 0, where 𝛼 = 𝑥 + ⟨𝑓 (𝑥)⟩ ∈ 𝐹 [𝑥]/⟨𝑓 (𝑥)⟩.
Indeed,

𝑓 (𝛼) =
𝑛∑︁
𝑖=0

𝜙 (𝑎𝑖 ) · 𝛼𝑖 =
𝑛∑︁
𝑖=0
(𝑎𝑖 + ⟨𝑓 (𝑥)⟩) · (𝑥 + ⟨𝑓 (𝑥)⟩)𝑖

=

𝑛∑︁
𝑖=0
(𝑎𝑖 + ⟨𝑓 (𝑥)⟩) · (𝑥𝑖 + ⟨𝑓 (𝑥)⟩)

=

𝑛∑︁
𝑖=0
(𝑎𝑖𝑥𝑖 + ⟨𝑓 (𝑥)⟩)

= (
𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 ) + ⟨𝑓 (𝑥)⟩

= 𝑓 (𝑥) + ⟨𝑓 (𝑥)⟩
= 0𝐹 [𝑥 ]/⟨𝑓 (𝑥 ) ⟩ .

The proof is complete. □

We also take a look at a way of representing field elements of 𝐹 [𝑥]/⟨𝑓 (𝑥)⟩. The division algorithm allows us to view this
factor ring the same as we view Z/𝑛Z, where the division algorithm allows us to represent each coset uniquely with the
remainder.
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To draw this parallel, we denote the equivalence relation 𝛼 (𝑥) ∼𝐹 [𝑥 ]/⟨𝑓 (𝑥 ) ⟩ 𝛽 (𝑥) as 𝛼 ≡ 𝛽 (mod 𝑓 (𝑥)). This relation is really
a congruence: addition and multiplication produce the same result when both inputs are replaced by equivalent elements
by the congruence.

Definition 7.4. Let 𝐹 be a field and 𝑓 (𝑥) ∈ 𝐹 [𝑥] irreducible. Two polynomials 𝑔(𝑥), ℎ(𝑥) ∈ 𝐹 [𝑥] are said to be congruent
modulo 𝑓 (𝑥) if 𝑔(𝑥) ∼𝐹 [𝑥 ]/⟨𝑓 (𝑥 ) ⟩ ℎ(𝑥).

Proposition 7.5. Let 𝐹 be a field and 𝑓 (𝑥) ∈ 𝐹 [𝑥] irreducible. Then, any element of 𝐹 [𝑥]/⟨𝑓 (𝑥)⟩ can be written uniquely
as 𝑟 (𝑥) + ⟨𝑓 (𝑥)⟩, where 𝑟 (𝑥) ∈ 𝐹 [𝑥] has degree strictly less than deg 𝑓 .

Proof. Let ℎ(𝑥) ∈ 𝐹 [𝑥] be arbitrary and suppose ℎ(𝑥) + ⟨𝑓 (𝑥)⟩ = 𝑟 (𝑥) + ⟨𝑓 (𝑥)⟩, where 𝑟 (𝑥) ∈ 𝐹 [𝑥] and deg 𝑟 < deg 𝑓 . Then,
ℎ(𝑥) − 𝑟 (𝑥) ∈ ⟨𝑓 (𝑥)⟩, so ℎ(𝑥) = 𝑓 (𝑥) · 𝑞(𝑥) + 𝑟 (𝑥) for some 𝑞(𝑥) ∈ 𝐹 [𝑥]. The uniqueness of the long division algorithm
(Theorem 6.13) implies that the choice of 𝑟 (𝑥) is unique, and one such choice is given explicitly by the algorithm. □

So, C is really just R[𝑥]/⟨𝑥2 + 1⟩, where elements of C, represented uniquely as (𝑎𝑥 + 𝑏) + ⟨𝑥2 + 1⟩ for 𝑎, 𝑏 ∈ R, are really
𝑎𝑖 + 𝑏. Here, 𝑖 = “1𝑖 + 𝑏” = 𝑥 + ⟨𝑥2 + 1⟩. This machinery equips us to dig deeper into number theory.

Definition 7.6. An element 𝛼 of an extension field 𝐸 of a field 𝐹 is said to be algebraic over 𝐹 if it is a zero of a non-zero
polynomial in 𝐹 [𝑥]. Otherwise, 𝛼 is said to be transcendental over 𝐹 .

Definition 7.7. A real or complex number 𝑥 ∈ R ∪ C is said to be an algebraic number if it is algebraic over Q; otherwise,
𝑥 is said to be a transcendental number.

A prototypical example is that
√

2, which is not in Q but is algebraic over Q because 𝑥2 − 2 = 0. It is well-known, but not at
all obvious, that both e and 𝜋 are transcendental over Q. But neither is transcendental over R: e is a zero of the polynomial
(𝑥 − e) ∈ R[𝑥] and 𝜋 is a zero of the polynomial (𝑥 − 𝜋) ∈ R[𝑥].

Corollary 7.8. A complex number is an algebraic number if and only if it is a zero of a polynomial over Z.

Proof. The “if” direction is obvious. Conversely, given a zero 𝑧 in C of a non-constant polynomial 𝑎0+· · ·+𝑎𝑛𝑥𝑛 (𝑛 ≥ 1) over
Q, multiply all coefficients by the least common multiple of the denominators of the coefficients to obtain a polynomial in
Z with the same zeros to obtain a polynomial 𝑐𝑎0 + · · · + 𝑐𝑎𝑛𝑥𝑛 ∈ Z[𝑥] with the same zeros. In particular, 𝑧 remains a zero
of the constructed polynomial. □

We will leverage the tool of homomorphisms heavily throughout our discussion of extension fields. The following is a
prototypical example that highlights its utility.

Lemma 7.9. Suppose 𝛼 ∈ 𝐸 ≥ 𝐹 and let 𝜙𝛼 : 𝐹 [𝑥] → 𝐸 be the evaluation homomorphism of 𝐹 [𝑥] at 𝛼 . Then, 𝛼 is
transcendental over 𝐹 if and only if 𝜙𝛼 is injective.

Proof. Suppose for the “if” direction that 𝜙𝛼 is injective. Then, ker𝜙𝛼 is trivial, so no polynomial in 𝐹 [𝑥], other than the
zero polynomial, evaluates to 0 at 𝛼 . In particular, no non-constant polynomial in 𝐹 [𝑥] evaluates to 0 at 𝛼 . By definition,
therefore, 𝛼 is transcendental over 𝐹 .

Suppose for the other direction that 𝛼 is transcendental. Consider the kernel of 𝜙𝛼 , which necessarily contains 0. For any
other 𝑓 (𝑥) ∈ 𝐹 [𝑥]\{0}, there are two possibilities: (a) if 𝜙𝛼 (𝑓 (𝑥)) = 𝑓 (𝛼) is a (non-zero) constant, then it never evaluates
to 0; (b) if 𝑓 (𝛼) is non-constant, then because 𝛼 is transcendental, 𝑓 (𝛼) ≠ 0. Therefore, ker𝜙𝛼 is trivial, which implies that
𝜙𝛼 is injective. □

Consider 𝛼 ∈ 𝐸 ≥ 𝐹 algebraic over 𝐹 . Of the many polynomials in 𝐹 [𝑥], any of which has 𝛼 as a zero, can we find a particular
representative for 𝛼? The following theorem replies affirmatively by choosing a monic, irreducible representative.

44



Theorem 7.10. Let 𝛼 ∈ 𝐸 ≥ 𝐹 be algebraic over 𝐹 . Then, there exists a unique monic, irreducible polynomial 𝑝 (𝑥) ∈ 𝐹 [𝑥] such
that 𝑝 (𝛼) = 0.

Proof. Let 𝐼 B {𝑓 (𝑥) ∈ 𝐹 [𝑥] | 𝑓 (𝛼) = 0}, which we claim is an ideal of 𝐹 [𝑥]. One can verify that it is a subgroup under
addition by checking closure under addition and additive inverses, and that it absorbs multiplication by ring elements on
both sides.

Then, there exists a generator 𝑝 (𝑥) ∈ 𝐹 [𝑥] of 𝐼 . We now argue that 𝑝 (𝑥) is non-constant. Suppose the contrary, so either
𝐼 = 0 when 𝑝 (𝑥) = 0, or 𝐼 = 𝑅 when 𝑝 (𝑥) ∈ 𝐹\{0}. If 𝐼 = 0, then 𝛼 is by definition transcendental, a contradiction. The
other case that 𝐼 = 𝑅 is absurd by inspecting its definition, since polynomials of degree 1 (i.e., non-zero constants) cannot
have any zeros, including 𝛼 , another contradiction. Because 𝑝 (𝑥) is non-constant, all possible 𝑝 (𝑥) are equivalent up to
multiplication by a non-zero constant. Therefore, denoting 𝑝 (𝑥) = 𝑎0 + · · · + 𝑎𝑛𝑥𝑛 where 𝑎𝑛 ≠ 0 and 𝑛 ≥ 1, the monic
generator 𝑝 (𝑥) B 𝑎−1

𝑛 · 𝑝 (𝑥) of 𝐼 must be unique.

It remains to show that 𝑝 (𝑥) is irreducible. Indeed, let 𝑝 (𝑥) = 𝑓 (𝑥) · 𝑔(𝑥) where 𝑓 (𝑥), 𝑔(𝑥) ∈ 𝐹 [𝑥]. Then, 𝑝 (𝛼) = 0 implies
that either 𝑓 (𝛼) = 0 or 𝑔(𝛼) = 0. Suppose 𝑓 (𝛼) = 0, or 𝑓 (𝑥) ∈ 𝐼 = ⟨𝑝 (𝑥)⟩, without loss of generality. By similar logic
as above, 𝑓 is a non-constant polynomial as well. Then, 𝑓 (𝑥) = 𝑝 (𝑥) · 𝑔′ (𝑥) for some 𝑔′ (𝑥) ∈ 𝐹 [𝑥]. Combining the two
equations, we have 𝑓 (𝑥) = 𝑓 (𝑥) · 𝑔(𝑥) · 𝑔′ (𝑥), or 𝑓 (𝑥) · (1 − 𝑔(𝑥) · 𝑔′ (𝑥)) = 0. Because 𝑓 (𝑥) ≠ 0, 𝑔(𝑥) · 𝑔′ (𝑥) = 1, so 𝑔(𝑥)
must be a (non-zero) constant. The proof is now complete. □

Definition 7.11. Let𝛼 ∈ 𝐸 ≥ 𝐹 be algebraic over 𝐹 . The unique monic, irreducible polynomial 𝑝 (𝑥) ∈ 𝐹 [𝑥] which generates
the ideal of polynomials in 𝐹 [𝑥] having 𝛼 as a zero, according to Theorem 7.10, is denoted as irr(𝛼, 𝐹 ) and called the minimal
polynomial for 𝛼 over 𝐹 . The degree of irr(𝛼, 𝐹 ), called the degree of 𝛼 over 𝐹 , is denoted as deg(𝛼, 𝐹 ).

It’s noteworthy to remark that there is no apparent algorithm that identifies the minimal polynomial. Consider the following
example:

Let 𝛼 B
√︁

1 +
√

3 ∈ R, which is an algebraic number. Then, 𝛼2 = 1 +
√

3, so (𝛼2 − 1)2 = 3. In other words, 𝛼4 − 2𝛼2 − 2 = 0.
By the Eisenstein criterion (Proposition 6.25) with 𝑝 = 2, we see that 𝑓 (𝑥) B 𝑥4 − 2𝑥2 − 2 ∈ Q[𝑥] is a monic, irreducible
polynomial. The uniqueness of the minimal polynomial therefore implies irr(𝛼,Q) = 𝑥4 − 2𝑥2 − 2.

All previous discussions on extension fields concern a given extension field 𝐸 of 𝐹 . We now build towards to other direction:
given a field 𝐹 and some “element” with some desired properties, can we create an extension field 𝐸 of 𝐹 that’s just large
enough to include the given element and, of course, the entirety of 𝐹?

Let’s first narrow down the elements of consideration. We can certainly describe 𝛼 as a (non-existent) zero of a polyno-
mial in 𝐹 [𝑥], where we can manually construct 𝐹 [𝛼] already. Otherwise, we should assume complementarily that 𝛼 is
transcendental over 𝐹 (although we do not know in general which field 𝛼 is in).

To this extent, we consider what we shall call simple extensions of a field 𝐹 , where the desired “element” comes from some
larger given field 𝐸 which must exist.

Case I. Suppose 𝛼 ∈ 𝐸 ≥ 𝐹 is algebraic over 𝐹 . Then, 𝐹 [𝑥]/⟨irr(𝛼, 𝐹 )⟩ is isomorphic to an extension field of 𝐹 . We define
𝐹 (𝛼) as the image of the injective homomorphism 𝐹 [𝑥]/⟨irr(𝛼, 𝐹 )⟩ ↩→ 𝐸 which takes a coset to the evaluation of its
minimal degree representative at 𝛼 , satisfying 𝐹 ≤ 𝐹 (𝛼) ≤ 𝐸. Note that any member of such a coset evaluates to the
same value in 𝐸 at 𝛼 ∈ 𝐸. 𝐹 (𝛼) is the result of an effort to create an extension field of 𝐹 just large enough to include
𝛼 as well.

Case II. Suppose instead that𝛼 ∈ 𝐸 ≥ 𝐹 is transcendental over 𝐹 . By Lemma 7.9, the evaluation homomorphism𝜙𝛼 : 𝐹 [𝑥] → 𝐸

is injective. In other words, every polynomial in 𝐹 [𝑥] evaluates to a different number in 𝐸 at 𝛼 . These evaluations must
be included (after mapping by some injective homomorphism) in the extension field by field axioms, and including
them gives us a domain 𝐹 [𝛼]. This notation is understood as the ring of polynomials over the indeterminate 𝛼 , which
is a different mathematical object from the field element 𝛼 ∈ 𝐸; however, every element of the domain is identified
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naturally with a number in 𝐸 via evaluation at 𝛼 ∈ 𝐸. In this case, we would have to expand the extension field to
the field of fractions of 𝐹 [𝑥], which we denote as 𝐹 (𝛼), whose notation is understood in the same way as 𝐹 [𝛼]. Note
that 𝐹 ↩→ 𝐹 (𝛼) ↩→ 𝐸 in a natural way,3 so we may redefine 𝐹 (𝛼) as its image in 𝐸.

Note that 𝐹 (𝛼) is by definition dependent on 𝐸 ∋ 𝛼 . By renaming, there are infinitely many other extension fields 𝐹 (𝛼)
of 𝐹 isomorphic to 𝐹 (𝛼). This observation highlights why we often say “𝐹 is a subfield of 𝐸” when we really mean “𝐹 is
isomorphic to a subfield of 𝐸,” or equivalently “there exists an injective homomorphism from 𝐹 to 𝐸.” However, we will
refrain from indulging in these shorthands for the sake of rigorous logic. Regardless, given a specific 𝐸 ∋ 𝛼 , 𝐹 (𝛼) has a
unique definition algorithmically.

Definition 7.12. Let 𝛼 ∈ 𝐸 ≥ 𝐹 . The simple extension of 𝐹 by 𝛼 , denoted as 𝐹 (𝛼), is defined as follows:

• When 𝛼 is algebraic over 𝐹 , 𝐹 (𝛼) is an extension field of 𝐹 in 𝐸 isomorphic to 𝐹 [𝑥]/⟨irr(𝛼, 𝐹 )⟩;

• When 𝛼 is transcendental over 𝐹 , 𝐹 (𝛼) is an extension field of 𝐹 in 𝐸 isomorphic to 𝐹 (𝑥).

That such extension fields are unique in 𝐸 is not immediately straightforward, since two isomorphic subfields need not equal
each other as sets (e.g., Q(𝜋) is countable, so there exists some transcendental 𝑧 ∉ Q(𝜋) so that Q(𝜋) ≃ Q(𝑧) but clearly
differ as sets. We provide another perspective of defining simple extensions which will achieve this purpose.

Definition 7.13. An extension field 𝐸 of 𝐹 is said to be a simple extension if 𝐸 = 𝐹 (𝛼) for some 𝛼 ∈ 𝐸.

Note that we could equivalently weaken the definition above to 𝐸 ≃ 𝐹 (𝛼) instead of 𝐸 = 𝐹 (𝛼).

We first state a corollary of Proposition 7.5 in the context of simple extensions.

Corollary 7.14. Let 𝐸 = 𝐹 (𝛼) be a simple extension of 𝐹 , where 𝛼 ∈ 𝐸 is algebraic over 𝐹 . Then, every element 𝑥 of 𝐸 can
be written uniquely as a tuple (𝑎0, · · · , 𝑎𝑛−1) ∈ 𝐹𝑛 such that 𝑥 = 𝑎0 + · · · + 𝑎𝑛−1𝛼

𝑛−1, where 𝑛 = deg(𝛼, 𝐹 ).

We also include a useful and straightforward lemma.

Lemma 7.15. Let 𝛼 ∈ 𝐸 ≥ 𝐹 and 𝛽 ∈ 𝐹 (𝛼). Then, 𝐹 (𝛽) ≤ 𝐹 (𝛼).

Proof. Let 𝑧 ∈ 𝐹 (𝛽) and 𝛽 = 𝑐0 + · · · + 𝑐𝑘𝛼𝑘 , where 𝑐0, · · · , 𝑐𝑘 ∈ 𝐹 . By definition, there exist polynomials 𝑓 (𝑥), 𝑔(𝑥) ∈ 𝐹 [𝑥],
where 𝑔(𝑥) ≠ 0, such that 𝑧 = 𝑓 (𝛽)/𝑔(𝛽). Let 𝑓 (𝑥) = 𝑎0 + · · · + 𝑎𝑚𝑥𝑚 and 𝑔(𝑥) = 𝑏0 + · · · + 𝑏𝑛𝑥𝑛 . Then,

𝑧 =
𝑎0 + · · · + 𝑎𝑚 · (𝑐0 + · · · + 𝑐𝑘𝛼𝑘 )𝑚

𝑏0 + · · · + 𝑏𝑛 · (𝑐0 + · · · + 𝑐𝑘𝛼𝑘 )𝑛
,

in which 𝑐0, · · · , 𝑐𝑘 , 𝑏0, · · · , 𝑏𝑛, 𝑐0, · · · , 𝑐𝑘 ∈ 𝐹 ≤ 𝐹 (𝛼) and 𝛼 ∈ 𝐹 (𝛼). Therefore, applying all operations in 𝐹 (𝛼) naturally, we
conclude that 𝑧 ∈ 𝐹 (𝛼) by field axioms. □

Now, we leverage our knowledge about vector spaces here, demonstrating an elegant application of linear algebra.

Proposition 7.16. Let 𝛼 ∈ 𝐸 ≥ 𝐹 be algebraic over 𝐹 . Then, 𝐹 (𝛼) is an 𝑛-dimensional vector space over 𝐹 that admits the
basis {1, · · · , 𝛼𝑛−1}, where 𝑛 = deg(𝛼, 𝐹 ). Further, every element 𝛽 ∈ 𝐹 (𝛼) is algebraic over 𝐹 with deg(𝛽, 𝐹 ) ≤ deg(𝛼, 𝐹 ).

Proof. First, 𝐹 (𝛼) is by definition a vector space over 𝐹 , which inherits addition and scalar multiplication naturally from
field operations. We now show that {1, · · · , 𝛼𝑛−1} is a basis. Indeed, by Corollary 7.14 above, every 𝑣 ∈ 𝐹 (𝛼) can be written
uniquely as 𝑣 = 𝑐0 · 1 + · · · + 𝑐𝑛−1 · 𝛼𝑛−1, where 𝑐0, · · · , 𝑐𝑛−1 ∈ 𝐹 .

For every 𝛽 ∈ 𝐹 (𝛼), 𝐹 ≤ 𝐹 (𝛽) ≤ 𝐹 (𝛼) by Lemma 7.15. Because 𝐹 (𝛽) is a vector space over 𝐹 with the same operations, and
𝐹 (𝛽) ⊆ 𝐹 (𝛼), 𝐹 (𝛽) is a subspace of 𝐹 (𝛼), which then has dimension at most 𝑛. Applying the argument from the previous
paragraph to 𝐹 (𝛽), we see that deg(𝛽, 𝐹 ) ≤ deg(𝛼, 𝐹 ). □

3The hooked right arrow ↩→ denotes an injective homomorphism here.
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7.2 Algebraic Extensions

The second half of Proposition 7.16 tells us that if 𝛼 ∈ 𝐸 ≥ 𝐹 is algebraic over 𝐹 and 𝛽 ∈ 𝐹 (𝛼), then 𝛽 is algebraic over 𝐹 . In
other words, 𝐹 (𝛼) is such an extension of 𝐹 that every element of 𝐹 (𝛼) is algebraic over 𝐹 . We therefore generalize simple
extensions in the following way, by considering the larger family of algebraic extensions of a field.

Definition 7.17. An extension field 𝐸 ≥ 𝐹 is said to be an algebraic extension of 𝐹 if every element of 𝐸 is algebraic over
𝐹 .

We also leverage the notion of dimensionality to define finite extensions.

Definition 7.18. Suppose 𝐸 ≥ 𝐹 is a finite-dimensional vector space over 𝐹 . Then, 𝐸 is said to be a finite extension of
degree 𝑛 over 𝐹 , where 𝑛 is the dimension of 𝐸 over 𝐹 , or simply a finite extension of 𝐹 .

Definition 7.19. Given a field extension 𝐸 ≥ 𝐹 , the degree of 𝐸 over 𝐹 , denoted as [𝐸 : 𝐹 ], is defined as the degree of 𝐸
over 𝐹 .

We begin our analysis by considering the special case of [𝐸 : 𝐹 ] = 1.

Proposition 7.20. Suppose 𝐸 ≥ 𝐹 . Then, [𝐸 : 𝐹 ] = 1 if and only if 𝐸 = 𝐹 .

Proof. Suppose [𝐸 : 𝐹 ] = 1 and fix a basis {𝑣} of 𝐸 over 𝐹 , where 𝑣 ∈ 𝐸. Then, 𝐸 = {𝑐 · 𝑣 | 𝑐 ∈ 𝐹 }. In particular, 1 = 𝑐1 · 𝑣 for
some 𝑐1 ∈ 𝐹 , so 𝑣 = 𝑐−1

1 ∈ 𝐹 as well; further, 𝑣 is a unit in 𝐹 . Therefore, 𝐸 = 𝑣𝐹 = ⟨𝑣⟩𝐹 = ⟨1⟩𝐹 = 𝐹 . □

It turns out that not only simple extensions, but all finite extensions, are algebraic extensions.

Theorem 7.21. A finite extension 𝐸 ≥ 𝐹 is an algebraic extension of 𝐹 .

Proof. Denote 𝑛 as the dimension of 𝐸 over 𝐹 and suppose 𝛼 ∈ 𝐸. Then, the list of 𝑛 + 1 vectors 1, · · · , 𝑎𝑛 cannot be linearly
independent. Therefore, there exist scalars 𝑐0, · · · , 𝑐𝑛 ∈ 𝐹 , not all zeros, such that

𝑐0 + · · · + 𝑐𝑛𝛼𝑛 = 0;

in other words, there exists a non-zero polynomial 𝑓 (𝑥) ∈ 𝐹 [𝑥]\{0} such that 𝑓 (𝛼) = 0. Therefore, 𝛼 is algebraic over 𝐹 . □

We have as a corollary a useful criterion for algebraicity.

Corollary 7.22. Let 𝛼 ∈ 𝐸 ≥ 𝐹 . Then, 𝛼 is algebraic over 𝐹 if and only if [𝐹 (𝛼) : 𝐹 ] is finite; that is, 𝐹 (𝛼) is a finite extension
of 𝐹 .

Proof. The ⇒ direction is the first part of Proposition 7.16. For the ⇐ direction, 𝐹 (𝛼) is an algebraic extension of 𝐹 by
Theorem 7.21 above, so 𝛼 ∈ 𝐹 (𝛼) in particular is algebraic over 𝐹 . □

The notation [𝐸 : 𝐹 ] may be reminiscent of the index [𝐺 : 𝐻 ] of a subgroup 𝐻 ≤ 𝐺 , which comes with a multiplication
equation. Similarly, we have the following result concerning the degree of finite extensions.

Proposition 7.23. Suppose 𝐹 ≤ 𝐸 ≤ 𝐾 , where 𝐸 is a finite extension over 𝐹 and 𝐾 a finite extension over 𝐸. Then, 𝐾 is a
finite extension over 𝐹 , and [𝐾 : 𝐹 ] = [𝐾 : 𝐸] [𝐸 : 𝐹 ].

Proof. Suppose {𝑒1, · · · , 𝑒𝑛} ∈ 𝐸 is a basis of 𝐸 over 𝐹 and {𝑘1, · · · , 𝑘𝑚} ∈ 𝐾 a basis of 𝐾 over 𝐸. Then, for every 𝑘 ∈ 𝐾 , there
exist unique scalars 𝑏1, · · · , 𝑏𝑚 ∈ 𝐸 such that 𝑘 =

∑𝑚
𝑗=1 𝑏 𝑗𝑘 𝑗 . Subsequently, each 𝑏 𝑗 is a linear combination

∑𝑛
𝑖=1 𝑎𝑖 𝑗𝑒𝑖 , where

𝑎𝑖 𝑗 ∈ 𝐹 , so

𝑘 =

𝑚∑︁
𝑗=1

( 𝑛∑︁
𝑖=1

𝑎𝑖 𝑗𝑒𝑖

)
𝑘 𝑗 =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑎𝑖 𝑗 · 𝑒𝑖𝑘 𝑗 .
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Therefore, {𝑒𝑖 · 𝑘 𝑗 | 𝑖 = 1, · · · , 𝑛, 𝑗 = 1, · · · ,𝑚} spans 𝐾 over 𝐹 .

It remains to show linear independence. Suppose constants {𝑐𝑖 𝑗 | 𝑖 = 1, · · · , 𝑛 𝑗 = 1, · · · ,𝑚} are such that

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑖 𝑗𝑒𝑖𝑘 𝑗 =

𝑚∑︁
𝑗=1

( 𝑛∑︁
𝑖=1

𝑐𝑖 𝑗𝑒𝑖

)
· 𝑘 𝑗 = 0.

Because {𝑘 𝑗 } is linearly independent,
∑
𝑖 𝑐𝑖 𝑗𝑒𝑖 = 0 for all 𝑗 . Because {𝑒𝑖 } is linearly independent, 𝑐𝑖 𝑗 = 0 for all 𝑖 and all 𝑗 .

The proof is now complete. □

Corollary 7.24. Suppose 𝐹0 ≤ · · · ≤ 𝐹𝑛 , where 𝐹𝑖 is a finite extension of 𝐹𝑖−1 for each 𝑖 = 1, · · · , 𝑛. Then, 𝐹𝑛 is a finite
extension of 𝐹0, and

[𝐹𝑛 : 𝐹0] = [𝐹𝑛 : 𝐹𝑛−1] · · · [𝐹1 : 𝐹0] .

The corollary above is a trivial extension of Proposition 7.23 by induction.

Corollary 7.25. Let 𝛼 ∈ 𝐸 ≥ 𝐹 be algebraic over 𝐹 and suppose 𝛽 ∈ 𝐹 (𝛼). Then, deg(𝛽, 𝐹 ) divides deg(𝛼, 𝐹 ).

Proof. Let𝑚 = [𝐹 (𝛼) : 𝐹 ] < +∞, 𝑘 = [𝐹 (𝛼) : 𝐹 (𝛽)] by Lemma 7.15, and 𝑛 = [𝐹 (𝛽) : 𝐹 ] < +∞. We first show that 𝑘 is finite.
Let 𝛼0, · · · , 𝛼𝑚 ∈ 𝐹 (𝛼) be linearly independent over 𝐹 (𝛽). In particular, they are a list of𝑚 + 1 linearly independent vectors
over 𝐹 ≤ 𝐹 (𝛽). But this is impossible, since the dimension of 𝐹 (𝛼) over 𝐹 is𝑚. Therefore, 𝑘 ≤ 𝑚 < +∞.

Now, because 𝐹 ≤ 𝐹 (𝛽) ≤ 𝐹 (𝛼) is a chain of consecutive finite extensions, we have [𝐹 (𝛼) : 𝐹 ] = [𝐹 (𝛼) □

Corollary 7.25 is extremely powerful in computational problems. By the Corollary, 𝑥3 − 2 has no zeros in Q(
√

2): 𝑥3 − 2 is
irreducible by Eisenstein with 𝑝 = 2, so a zero would have degree 3 which does not divide 2 = deg(

√
2,Q).

To characterize finite extension fields, we’ll first look back at simple extensions. We show that a simple extension 𝐹 (𝛼) ≥ 𝐹
for some 𝛼 ∈ 𝐸 ≥ 𝐹 really is the smallest extension field of 𝐹 in 𝐸 containing 𝛼 .

Definition 7.26. Let (𝑆, ≤) be a partially ordered set. An element 𝑠 ∈ 𝑆 is said to be the smallest element of 𝑆 if 𝑠 ≤ 𝑎 for
any 𝑎 ∈ 𝑆 . An element 𝑠 ∈ 𝑆 is said to be a minimal element if no element 𝑎 ∈ 𝑆 is strictly smaller than 𝑠: for all 𝑎 ∈ 𝑆 , 𝑎 = 𝑠

whenever 𝑎 ≤ 𝑠 .

Corollary 7.27. There is a unique minimal element of a partially ordered set if and only if there exists smallest element of
the set. If this is true, then the minimal element and the smallest element coincide.

A partially ordered set (poset) (𝑆, ≤) is a directed, acyclic, transitive graph with loops on all vertices, whose edges are
precisely ≤= {(𝑎, 𝑏) | 𝑎, 𝑏 ∈ 𝑆 and 𝑎 ≤ 𝑏}. A minimal element is a vertex with in-degree 0. In a partially ordered set,
neither a minimal element nor a smallest element is guaranteed to exist (e.g., (Z, ≤)). A minimal element, when it exists,
need not be unique (e.g., all primes are minimal in (Z≥2, |) under the divisibility relation). However, when the smallest
element exists, it is necessarily unique by a simple symmetry argument. When 𝑆 is a collection of subsets of a common set,
there is a constructive way to find the smallest element.

Corollary 7.28. Let S be a family of subsets of a set 𝑋 , partially ordered by inclusion. Then, the smallest element of S
exists if and only if the intersection

⋂
𝑇 ∈S 𝑇 is an element of S . Further, if this is true, then the smallest element of S is⋂

𝑇 ∈S 𝑇 .

Proof. Let𝑇 ∗ B
⋂
𝑇 ∈S 𝑇 ⊆ 𝑋 . If𝑇 ∗ ∈ S , for every𝑇 ∈ S ,𝑇 ∗ is the intersection of some sets including𝑇 . Therefore,𝑇 ∗ ⊆ 𝑇 ,

and 𝑇 ∗ is the smallest element of S . If instead 𝑇 ∗ ∉ S , but assuming for contradiction that the smallest element 𝑇0 of S
exists, then 𝑇 ∗ ⊆ 𝑇0 and 𝑇0 ⊆ 𝑇 ∗ = ∩𝑇 ∈S𝑇 , both by definition. Therefore, 𝑇0 = 𝑇

∗ ∉ S , a contradiction.

It remains to note that by definition, the smallest element is the intersection of all subsets of 𝑋 from 𝑆 when it exists. □
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Theorem 7.29. Let 𝛼 ∈ 𝐸 ≥ 𝐹 . Then, 𝐹 (𝛼) is the smallest extension field of 𝐹 in 𝐸 that contains 𝛼 ; that is, 𝐹 (𝛼) is the smallest
element in ({𝐹 ′ ≤ 𝐸 | 𝐹 ′ ≥ 𝐹 and 𝛼 ∈ 𝐹 ′}, ≤).

Proof. If𝛼 is algebraic over 𝐹 , then 𝐹 (𝛼) ≃ 𝐹 [𝑥]/⟨irr(𝛼, 𝐹 )⟩. Every element 𝑧 ∈ 𝐹 (𝛼) is uniquely represented as a polynomial
in𝛼 over 𝐹 of degree strictly less than irr(𝛼, 𝐹 ). Every such polynomial must evaluate to an element that lies in any extension
field of 𝐹 in 𝐸 containing 𝛼 by field axioms.

If instead 𝛼 is transcendental over 𝐹 , then every element 𝑧 ∈ 𝐹 (𝛼) is uniquely represented as a rational function in 𝛼 over
𝐹 . Similarly by field axioms, 𝑧 is an element that lies in any extension field of 𝐹 in 𝐸 containing 𝛼 . □

We can now generalize simple extensions naturally to multiple numbers from 𝐸.

Definition 7.30. Let 𝛼1, · · · , 𝛼𝑛 ∈ 𝐸 ≥ 𝐹 . The field 𝐹 (𝛼1) · · · (𝛼𝑛), denoted as 𝐹 (𝛼1, · · · , 𝛼𝑛), is defined as the field adjoining
to 𝐹 the elements 𝛼1, · · · , 𝛼𝑛 .

The parentheses above are by definition left-associative. In other words, we first extend 𝐹 to 𝐹 (𝛼1). Then, we extend 𝐹 (𝛼1) by
𝛼2, and so on, until we finally extend 𝐹 (𝛼1) · · · (𝛼𝑛−1) by 𝛼𝑛 . Now, extending the equivalent definition for simple extensions,
we have the following equivalence:

Theorem 7.31. Let 𝛼1, · · · , 𝛼𝑛 ∈ 𝐸 ≥ 𝐹 . Then, 𝐹 (𝛼1) · · · (𝛼𝑛) is the smallest extension field of 𝐹 in 𝐸 containing 𝛼1, · · · , 𝛼𝑛 ;
that is, 𝐹 (𝛼1) · · · (𝛼𝑛) is the smallest element of ({𝐹 ′ ≤ 𝐸 | 𝐹 ′ ≥ 𝐹 | 𝛼1, · · · , 𝛼𝑛 ∈ 𝐹 ′}, ≤).

Proof. We first show that min{𝐹 ′ ≤ 𝐸 | 𝐹 ′ ≥ min{𝐹 ′′ ≤ 𝐸 | 𝐹 ′′ ≥ 𝐹 ∧ 𝛼1 ∈ 𝐹 ′′} ∧ 𝛼2 ∈ 𝐹 ′} = min{𝐹 ′ ≤ 𝐸 | 𝐹 ′ ∈ 𝐹 ∧ 𝛼1 ∈
𝐹 ′ ∧ 𝛼2 ∈ 𝐹 ′}. It is sufficient to show that 𝐹 ′ ≥ min{𝐹 ′′ ≤ 𝐸 | 𝐹 ′′ ≥ 𝐹 ∧ 𝛼1 ∈ 𝐹 ′′} = 𝐹 (𝛼1) is equivalent to 𝐹 ′ ≥ 𝐹 ∧ 𝛼1 ∈ 𝐹 ′.
For the⇒ direction, note that 𝐹 ′ ≥ 𝐹 (𝛼1) ⊇ 𝐹 ∪ {𝛼1}, so 𝐹 ′ ≥ 𝐹 and 𝛼1 ∈ 𝐹 ′ obviously. Conversely for the⇐ direction,
simply note that 𝐹 ′ is a valid choice of 𝐹 ′′, so 𝐹 ′ ≥ 𝐹 (𝛼1) by definition.

In other words, we have shown that 𝐹 (𝛼1) (𝛼2) = 𝐹 (𝛼1, 𝛼2) is the smallest extension field of 𝐹 in 𝐸 that contains 𝛼1, 𝛼𝑛 . By
induction, 𝐹 (𝛼1) · · · (𝛼𝑛) is the smallest extension field of 𝐹 in 𝐸 that contains 𝛼1, · · · , 𝛼𝑛 . □

Because the logical AND ∧ is commutative, we have the following corollary:

Corollary 7.32. Let 𝛼1, · · · , 𝛼𝑛 ∈ 𝐸 ≥ 𝐹 . Then, 𝐹 (𝛼1) · · · (𝛼𝑛) = 𝐹 (𝛼𝜎 (1) ) · · · (𝛼𝜎 (𝑛) ) for any permutation 𝜎 ∈ 𝑆𝑛 .

Proof. Observe that 𝐹 (𝛼1) · · · (𝛼𝑛) and 𝐹 (𝛼𝜎 (1) ) · · · (𝛼𝜎 (𝑛) ) are both the smallest extension field of 𝐹 in 𝐸 that contains
𝛼1, · · · , 𝛼𝑛 . □

Similarly, the rational functions over a field in 𝑛 indeterminates satisfy 𝐹 (𝑥1, · · · , 𝑥𝑛) ≃ 𝐹 (𝑥1) · · · (𝑥𝑛), although a complete
treatment is omitted for brevity.

We can now show the equivalence of finite extensions and extensions of adjoining 𝑛 variables.

Proposition 7.33. Let 𝐸 ≥ 𝐹 . Then, 𝐸 is a finite extension of 𝐹 if and only 𝐸 = 𝐹 (𝛼1, · · · , 𝛼𝑛) for some 𝛼1, · · · , 𝛼𝑛 ∈ 𝐸
algebraic over 𝐹 and some 𝑛 ∈ Z≥0.

Proof. Suppose 𝐸 = 𝐹 (𝛼1, · · · , 𝛼𝑛). Each 𝛼1, · · · , 𝛼𝑛 ∈ 𝐸 is algebraic over 𝐹 , so it is algebraic over any extension field of 𝐹 in
𝐸. In particular, for the chain of extensions

𝐹 ≤ 𝐹 (𝛼1) ≤ · · · ≤ 𝐹 (𝛼1, · · · , 𝛼𝑛) = 𝐸, (1)

𝛼𝑖+1 is algebraic over 𝐹 (𝛼1, · · · , 𝛼𝑖 ) for all 𝑖 ∈ {1, · · · , 𝑛 − 1}, so every extension from Chain 1 is a simple extension by an
algebraic element and hence a finite extension. Applying Proposition 7.24, 𝐸 = 𝐹 (𝛼1, · · · , 𝛼𝑛) is a finite extension of 𝐹 .
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Suppose instead that 𝐸 is a finite extension of 𝐹 , which is then an algebraic extension by Theorem 7.21. Let 𝛼1, · · · , 𝛼𝑛 be a
basis of 𝐸 in 𝐹 , all of which are algebraic over 𝐹 . Then, 𝐹 (𝛼1, · · · , 𝛼𝑛) ≤ 𝐸. To show inclusion in the other direction, note
that every 𝑒 ∈ 𝐸 is expressible uniquely as 𝑒 = 𝑐1𝛼1 + · · · + 𝑐𝑛𝛼𝑛 , where 𝑐1, · · · , 𝑐𝑛 ∈ 𝐹 . By field axioms, every 𝑒 is a member
of 𝐹 (𝛼1, · · · , 𝛼𝑛). The proof is complete. □

The proposition above allows us to conclude that the algebraic extension is a transitive relation.

Corollary 7.34. Suppose 𝐹 ′ ≥ 𝐹 and 𝐹 ′′ ≥ 𝐹 ′ are algebraic extensions. Then, 𝐹 ′′ is an algebraic extension of 𝐹 .

Proof. Let 𝛼 ∈ 𝐹 ′′, which is algebraic over 𝐹 ′. Thus, 𝑓 (𝛼) = 0 for some non-constant 𝑓 (𝑥) = 𝑎0 + · · · + 𝑎𝑛𝑥𝑛 ∈ 𝐹 ′ [𝑥]\𝐹 ′.
Because 𝑎0, · · · , 𝑎𝑛 ∈ 𝐹 ′ are algebraic over 𝐹 , 𝐹 (𝑎0, · · · , 𝑎𝑛) is a finite extension of 𝐹 by Proposition 7.33. Further, 𝛼 is a zero
of 𝑓 (𝑥) ∈ 𝐹 (𝑎0, · · · , 𝑎𝑛) [𝑥] ≤ 𝐹 ′ [𝑥], so 𝛼 is algebraic over 𝐹 (𝑎0, · · · , 𝑎𝑛) and [𝐹 (𝑎0, · · · , 𝑎𝑛, 𝛼) : 𝐹 (𝑎0, · · · , 𝑎𝑛)] is finite by
the same Proposition. Applying 7.23, we note that 𝐹 (𝑎0, · · · , 𝑎𝑛, 𝛼) is a finite extension, and hence an algebraic extension,
of 𝐹 . Therefore, 𝛼 ∈ 𝐹 (𝑎0, · · · , 𝑎𝑛, 𝛼) is algebraic over 𝐹 . □

Lastly, we remark that the algebraic elements of a field forms a field.

Proposition 7.35. Let 𝐸 ≥ 𝐹 . Then, the set {𝛼 ∈ 𝐸 | 𝛼 is algebraic over 𝐹 } is an extension field of 𝐹 in 𝐸.

Proof. It is sufficient to show that 𝐹𝐸 B {𝛼 ∈ 𝐸 | 𝛼 is algebraic over 𝐹 } satisfies field closure axioms. Given 𝛼, 𝛽 ∈ 𝐹𝐸 which
are both algebraic over 𝐹 , 𝐹 (𝛼, 𝛽) is a finite (Proposition 7.33) and hence algebraic (Theorem 7.21) extension of 𝐹 . Therefore,
every member of 𝐹 (𝛼, 𝛽), which includes 𝛼 + 𝛽,−𝛼, 𝛼 · 𝛽 always and includes 𝛼−1 when 𝛼 ≠ 0, is algebraic over 𝐹 . □

We now proceed to discuss algebraically closed field, which establishes the importance of C relative to Q.

Definition 7.36. A field 𝐹 is said to be algebraically closed if every non-constant polynomial over 𝐹 has a zero in 𝐹 .

Similar to the case in C, we can split any such polynomial into linear factors.

Proposition 7.37. A field 𝐹 is algebraically closed if and only if every non-constant polynomial over 𝐹 factors into linear
factors.

Proof. Suppose 𝐹 is algebraically closed and let 𝑓 (𝑥) ∈ 𝐹 [𝑥] be a non-constant polynomial. Denote𝑛 = deg 𝑓 . Let 𝑧1 be a zero
of 𝑓0 (𝑥) B 𝑓 (𝑥). Then, 𝑓0 (𝑥) C (𝑥 −𝑧1) · 𝑓1 (𝑥), where deg 𝑓1 (𝑥) = 𝑛−1. Continuing until 𝑓0 (𝑥) = (𝑥 −𝑧1) · · · (𝑥 −𝑧𝑛) · 𝑓𝑛 (𝑥),
where deg 𝑓𝑛 = 𝑛 − 𝑛 = 0 means 𝑓𝑛 is a constant, which we absorb into, say, (𝑥 − 𝑧1).

Suppose conversely that every non-constant polynomial 𝑓 (𝑥) over 𝐹 factors into linear factors. Suppose 𝑎𝑥 + 𝑏 is one such
factor. Then, −𝑎/𝑏 is a zero of 𝑓 (𝑥). □

Corollary 7.38. An algebraically closed field has no proper algebraic extension. That is, no proper extension field 𝐸 ⪈ 𝐹
of 𝐹 is an algebraic extension.

Proof. Suppose that 𝐸 is a algebraic extension of 𝐹 , which is algebraically closed. Let 𝑒 ∈ 𝐸, which is algebraic over 𝐹 .
Therefore, 𝑒 the zero of some non-constant polynomial over 𝐹 , which must be in 𝐹 . Therefore, 𝐹 ≤ 𝐸 ≤ 𝐹 , and 𝐸 = 𝐹 . □

Notably, the complex numbers form an algebraically closed field. In other words, C already contains all possible zeros of
polynomials; there are no more to add.

Lastly, we show that every field 𝐹 has an algebraic closure, so that the extension Q ≤ C can be generalized:

Definition 7.39. An algebraic closure of a field 𝐹 is an algebraic extension of 𝐹 that is algebraically closed.

That every field has an algebraic closure depends on the Axiom of Choice, which we state as follows.
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Axiom 7.1 (Axiom of Choice). For every set 𝑆 , there exists a choice function 𝑓 : 2𝑆\{∅} → 𝑆 such that 𝑓 (𝑋 ) ∈ 𝑋 for all
non-empty 𝑋 ⊆ 𝑆 .

In other words, 𝑓 chooses an element from 𝑋 for every non-empty subset 𝑋 from some given set. This formulation implies
(and is in fact equivalent to) Zorn’s lemma. We first define some basic terminology.

Definition 7.40. Let (𝑆, ≤) be a partially ordered set. A chain 𝐶 in 𝑆 is a totally ordered subset of 𝑆 ; that is, 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎
for all 𝑎, 𝑏 ∈ 𝐶 .

Recall that a maximal element of a poset is one such that no element is larger. This is the statement of Zorn’s lemma:

Lemma 7.41 (Zorn). Let (𝑆, ≤) be a partially ordered set. If every chain𝐶 in 𝑆 has an upper bound 𝑢 in 𝑆 ; that is, 𝑢 ≥ 𝑐 for
all 𝑐 ∈ 𝐶 , then 𝑆 has a maximal element.

It turns out Zorn’s lemma is equivalent to the Axiom of Choice. Another such statement is known as Tarski’s theo-
rem:

Theorem 7.42 (Tarski). Under ZF, let 𝐴 be an infinite set. Then, |𝐴 ×𝐴| = |𝐴| if and only if the Axiom of Choice holds.

Lastly, we shall require some machinery to deal with set theory, independent of the Axiom of Choice.

Theorem 7.43. For every set 𝑆 , the power set is strictly larger than 𝑆 ; that is, |2𝑆 | > |𝑆 |.

Proof. Suppose on the contrary that 𝑓 : 𝑆 → 2𝑆 is a surjection, and consider the set 𝑋 = {𝑥 ∈ 𝑆 | 𝑥 ∉ 𝑓 (𝑥)} ∈ 2𝑆 . Because
𝑓 is surjective, there exists 𝑥0 ∈ 𝑆 such that 𝑓 (𝑥0) = 𝑋 . If 𝑥 ∈ 𝑓 (𝑥) = 𝑋 , then 𝑥 ∉ 𝑓 (𝑥); if 𝑥 ∉ 𝑓 (𝑥), then ¬(𝑥 ∉ 𝑓 (𝑥)), so
𝑥 ∈ 𝑓 (𝑥). This is a contradiction, so 𝑓 cannot be surjective. □

The following statement allows us to show that the power set of a set 𝐴 is “sufficiently larger” than 𝐴.

Corollary 7.44. Let 𝐴 be an infinite set. Then, |𝐴| ≤ |{𝑆 ⊆ 𝐴 : |𝑆 | = 2}|.

Proof. Let 𝑎0 ∈ 𝐴. We first remark that |𝐴\{𝑎0}| = |𝐴|. Let 𝑆 ⊆ 𝐴 be countably infinite, so that 𝑆 B 𝑆 ∪ {𝑎0} remains
countably infinite. Fix a bijection 𝑓 : Z≥1 → 𝑆\{𝑎0} and define a bijection 𝑔 : Z≥1 → 𝑆 via 𝑔(1) B 𝑎0 and 𝑔(𝑖 − 1) B 𝑓 (𝑖)
for all 𝑖 ∈ Z≥2. Therefore, |𝑆 | = |Z≥1 | = |𝑆\{𝑎0}|. Let ℎ : 𝑆 → 𝑆\{𝑎0} be a bijection. Then, define a bijection 𝜙 : 𝐴→ 𝐴\{𝑎0}
via

𝜙 (𝑥) B
{
ℎ(𝑥), if 𝑥 ∈ 𝑆,
𝑥, otherwise,

which proves our remark. It only remains to note that

|𝐴| = |𝐴\{𝑎0}| = |{{𝑎0, 𝑎} | 𝑎 ∈ 𝐴\{𝑎0}}| ≤ |{𝑆 ⊆ 𝐴 : |𝑆 | = 2}|.

The proof is complete. □

We now state and prove the theorem of interest:

Theorem 7.45. Every field has an algebraic closure.

Proof. Let 𝐹 be a field and construct a set 𝐴 =
⋃
𝑓 ∈𝐹 [𝑥 ]{𝜔 𝑓 ,𝑖 | 𝑖 = 1, · · · , deg 𝑓 }.4 Let Ω = 2𝐴 ∪ 𝐹 , which has |Ω | > |𝐴|.

Let 𝑆 B {𝐸 ⊆ Ω | 𝐸 is an algebraic extension of 𝐹 }. In more precise terms,

𝑆 = {𝐸 ⊆ Ω | there exist binary operations +, · : 𝐸 × 𝐸 → 𝐸 such that (𝐸, +, ·) is an algebraic extension of 𝐹 }.
4The specific construction of 𝜔 𝑓 ,𝑖 does not matter; it only matters that 𝐴 has more elements than all potential zeros 𝜔 𝑓 ,𝑖 for every polynomial. One

can take 𝜔 𝑓 ,𝑖 as the ordered pair (𝑓 , 𝑖 ) for completeness.
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We shall index 𝑆 = {𝐸 𝑗 | 𝑗 ∈ 𝐽 } via an index set 𝐽 .5 Suppose 𝐶 = {𝐸 𝑗𝑘 | 𝑘 ∈ 𝐾} is a chain in 𝑆 and let𝑈 B
⋃
𝑘∈𝐾 𝐸 𝑗𝑘 , which

we make into a field by the following operations. Let 𝛼, 𝛽 ∈ 𝑈 with 𝛼 ∈ 𝐸 𝑗𝑘 and 𝛽 ∈ 𝐸 𝑗𝑘′ , where 𝐸 𝑗𝑘 ≤ 𝐸 𝑗𝑘′ without loss of
generality. Define 𝛼 +𝑈 𝛽 as the sum of 𝛼, 𝛽 ∈ 𝐸 𝑗𝑘′ and 𝛼 ·𝑈 𝛽 as the product of 𝛼, 𝛽 ∈ 𝐸 𝑗𝑘′ . Note that the choice of 𝑗𝑘 and
𝑗𝑘 ′ is irrelevant here: if 𝐸 𝑗𝑘 ≤ 𝐸 𝑗𝑘′ ≤ 𝐸 𝑗𝑘′′ , then the addition 𝑎 + 𝑏 (resp. the multiplication 𝑎 · 𝑏) produces the same result
whether taking place in 𝐸 𝑗𝑘′ or 𝐸 𝑗𝑘′′ . It remains to show that 𝑈 is an algebraic extension of 𝐹 . Indeed, for any 𝑎 ∈ 𝑈 , by
definition 𝑎 ∈ 𝐸 𝑗𝑘 for some 𝑗𝑘 ∈ 𝐽 . Then, 𝑎 is algebraic over 𝐹 because 𝐸 𝑗𝑘 ∈ 𝑆 is an algebraic extension of 𝐹 .

Therefore, by Zorn’s Lemma (Lemma 7.41), there exists a maximal element 𝐹 of 𝑆 ; that is, no element of 𝑆 properly contains
𝐹 . Suppose for contradiction that 𝐹 is not algebraically closed, so there exists a non-constant polynomial 𝑓 (𝑥) ∈ 𝐹 [𝑥]\𝐹
which admits no zeros in 𝐹 . We assume 𝑓 (𝑥) to be irreducible without loss of generality.6 Then 𝐹 ′ B 𝐹 [𝑥]/⟨𝑓 (𝑥)⟩ is an
algebraic extension of 𝐹 and 𝐹 is an algebraic extension of 𝐹 . Hence, by Corollary 7.34, 𝐹 ′ is algebraic extension of 𝐹 .

Observe that 𝐹 ′ ≤ ⋃
𝑓 (𝑥 ) ∈𝐹 [𝑥 ]/⟨𝐹 ⟩{𝛼 ∈ 𝐸 | 𝑓 (𝛼) = 0} because 𝐹 ′ is an algebraic extension of 𝐹 . Because for every such

𝑓 (𝑥), |{𝛼 ∈ 𝐸 | 𝑓 (𝛼) = 0}| ≤ deg 𝑓 = |{𝜔 𝑓 ,𝑖 ∈ 𝐴 | 𝑖 ∈ {1, · · · , deg 𝑓 }}|, and such an association always maps different
𝑓 (𝑥) to different 𝜔 𝑓𝑖 , we conclude that 𝐹 ′ ≤ 𝐴. Therefore, |𝐹 ′\𝐹 | ≤ |𝐹 ′ | ≤ |𝐴| ≤ |{𝑆 ⊆ 𝐴 : |𝑆 | = 2}| ≤ |2𝐴\�̃�| ≤ |2𝐴\𝐹 | ≤
|(2𝐴 ∪ 𝐹 )\𝐹 | = |Ω\𝐹 |, where �̃� = {{𝑎} | 𝑎 ∈ 𝐴}. The penultimate inequality follows from |𝐹 | ≤ |�̃�| = |𝐴| and the last
inequality follows from 𝐹 ≤ 𝐹 . We are hence given an injection𝜓 : 𝐹 ′\𝐹 ↩→ Ω\𝐹 .

Finally, we construct an injection 𝜙 : 𝐹 ′ ↩→ Ω which fixes 𝐹 ; that is, 𝜙 |
𝐹
= 𝜄 is an inclusion map:

𝜙 (𝑥) B
{
𝑥, if 𝑥 ∈ 𝐹,
𝜓 (𝑥), otherwise.

By𝜙 we may therefore rename 𝐹 ′ to𝜙 [𝐹 ′] ≤ Ω, an algebraic extension of 𝐹 in Ω which properly contains 𝐹 . This contradicts
the maximality of 𝐹 , which shows that 𝐹 must be algebraically closed. □

5This is always possible by, e.g., letting 𝐸 𝑗 B 𝑗 and 𝐽 = 𝑆 .
6A reducible (non-constant) polynomial always factors into irreducible factors, and it has a zero iff any factor has a zero. To show no non-constant

polynomial has a zero, it suffices to show no irreducible polynomial has a zero. In other words, assume 𝑓 (𝑥 ) is “the minimal polynomial” of the zero.
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