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1 Preliminaries

1.1 Notation

In this article, N = {1, 2, 3, · · · } will not contain 0. We will denote with Z≥0 the set of natural numbers, with 0 in-
cluded.

We will assume everything about Q B Z × N, including, but not limited, to the dense property, the unboundedness, the
field axioms, the inequalities, etc.

Unless specified otherwise, all variables are assumed to be real.

1.2 Sets

We will use the typical set notations. For example:

• {1, 2, · · · } refers to the set of natural numbers, N;

• {𝑝/𝑞 | 𝑝 ∈ Z, 𝑞 ∈ N} refers to the set of rational numbers, Q. We also use “:” instead of “|” sometimes to avoid
ambiguity;

• {𝑥 ∈ R | ∃(𝑝, 𝑞) ∈ Z ×N, 𝑥 = 2𝑝/𝑞} refers to the same set (why?), where × denotes the Cartesian product of sets. We
also use : instead of | sometimes to avoid ambiguity.

We use the symbol ∅ to denote the empty set. We use | · | to denote the cardinality of a set. We use the symbol 2𝑆 to denote
the power set of 𝑆 , or the set of all subsets of 𝑆 . We use 𝐵𝐴 to denote the set of all functions from 𝐴 to 𝐵.

To justify the use of cardinality, we state the following definition:

Definition 1.1. Let 𝐴, 𝐵 be sets. 𝐴 and 𝐵 are said to have the same cardinality iff there exists a bijective function 𝐴 → 𝐵;
that is, ∃𝑓 ∈ 𝐵𝐴, (∀𝑦 ∈ 𝐵, ∃𝑥 ∈ 𝐴, 𝑓 (𝑥) = 𝑦) ∧ (∀(𝑥1, 𝑥2) ∈ 𝐴 ×𝐴, 𝑓 (𝑥1) = 𝑓 (𝑥2) ⇒ 𝑥1 = 𝑥2).

We say that |𝐴| ≤ |𝐵 | if there exists an injection from 𝐴 to 𝐵. We say that |𝐴| = |𝐵 | if 𝐴 and 𝐵 have the same cardinality.
We say that |𝐴| < |𝐵 | if |𝐴| ≤ |𝐵 | and ¬(|𝐴| = |𝐵 |).

We state the following without proof.

Theorem 1.2 (Cantor-Bernstein-Schröder theorem). Let 𝐴, 𝐵 be sets such that |𝐴| ≤ |𝐵 | and |𝐵 | ≤ |𝐴|. Then, |𝐴| = |𝐵 |.

If you’re interested, click here to read about a proof!

Definition 1.3. Suppose 𝐴 is a set. If 𝐴 = ∅, then we write |𝐴| = 0. If |𝐴| = |{1, 2, · · · , 𝑛}| for some 𝑛 ∈ N, then we write
|𝐴| = 𝑛. If either condition holds, then we say that 𝐴 is finite. If 𝐴 is not finite, we say that 𝐴 is infinite.

If |𝐴| = |N|, then we say that 𝐴 is countably infinite and write |𝐴| = ℵ0.1

1The first Hebrew letter, ℵ, is pronounced as /"A:lef/, similar to AH-lef (“lef” as in “left”) in English.
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Three big things we state without proof:

• Countably infinite sets are infinite;

• An infinite set has a countably infinite subset;

• Suppose 𝐴, 𝐵 are sets. If 𝐴 ⊂ 𝐵 and 𝐵 is finite, then 𝐴 is finite. The contrapositive is if 𝐴 ⊂ 𝐵 and 𝐴 is infinite, then 𝐵
is infinite.

An immediate consequence of the last statement is that |𝐴| < |N| implies that 𝐴 is finite for any set 𝐴.

2 The Set of Real Numbers

We should start by claiming:

Theorem 2.1. The set of real numbers R exists and is a complete ordered field.2

If you are interested in a proof, see Appendix A.

Definition 2.2. A subset of real numbers 𝑆 ⊆ R is said to be bounded from above iff ∃𝑀 ∈ R,∀𝑥 ∈ 𝑆, 𝑥 ≤ 𝑀 ; such
𝑀 is said to be an upper bound of 𝑆 . Similarly, a subset of real numbers 𝑆 ⊆ R is said to be bounded from below iff
∃𝑀 ∈ R,∀𝑥 ∈ 𝑆, 𝑥 ≥ 𝑀 ; such 𝑀 is said to be a lower bound of 𝑆 . A subset 𝑆 ⊆ R is bounded iff it is both bounded from
above and bounded from below.

An upper/lower bound is said to be strict iff the inequality in the definition can be replaced with a strict inequality.

Definition 2.3. Let 𝑆 ⊆ R and 𝑏1, 𝑏2 ∈ R. We say that 𝑏1 is a least upper bound, or supremum, of 𝑆 iff 𝑏1 is an upper bound
and 𝑏1 is no greater than any upper bound, or formally,

∀𝑏′ ∈ R, (∀𝑥 ∈ 𝑆, 𝑥 ≤ 𝑏′) ⇒ 𝑏′ ≥ 𝑏1.

Similarly, 𝑏2 is said to be a greatest lower bound, or infimum, of 𝑆 off 𝑏2 is a lower bound of 𝑆 and 𝑏2 is no less than any
lower bound, or formally,

∀𝑏′ ∈ R, (∀𝑥 ∈ 𝑆, 𝑥 ≥ 𝑏′) ⇒ 𝑏′ ≤ 𝑏2.

Proposition 2.4. Let 𝑆 ⊆ R be non-empty. If 𝑏 is a least upper bound of 𝑆 , then 𝑏 is unique.

Proof. Let 𝑆 ⊂ R be non-empty. Let 𝑏 be a least upper bound of 𝑆 . Then, 𝑏 is no greater than any other upper bound 𝑏′, or
𝑏′ > 𝑏. So 𝑏′ cannot be the least upper bound, and the proof is completed. □

As noted above, we will take for granted the least upper bound property of real numbers, which can be derived from, e.g.,
Dedekind cuts, as demonstrated in Theorem A.11.

Theorem 2.5. Let 𝑆 ⊂ R. If 𝑆 is bounded from above, then 𝑆 has a least upper bound.

We now present another equivalent characterization of least upper bounds.

Proposition 2.6. Let 𝑆 ⊂ R be non-empty and bounded from above. For any upper bound 𝑏 of 𝑆 , 𝑏 is the least upper bound
of 𝑆 if and only if ∀𝜖 > 0, ∃𝑥 ∈ 𝑆, 𝑏 − 𝑥 < 𝜖 .

Proof. We first prove the “if” direction. Suppose 𝑏 is an upper bound of 𝑆 and ∀𝜖 > 0, ∃𝑥 ∈ 𝑆, 𝑏 − 𝑥 < 𝜖 . Suppose 𝑏′ < 𝑏 is
also an upper bound of 𝑆 . Let 𝜖 = 𝑏 − 𝑏′. Then, there exists some 𝑥 ∈ 𝑆 such that 𝑏 − 𝑥 < 𝑏 − 𝑏′. That is, 𝑏′ < 𝑥 for some
𝑥 ∈ 𝑆 , so 𝑏′ is not an upper bound of 𝑆 , which is a contradiction.

2The word “complete” is in the sense that R has the least upper bound property.
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We now show the “only if” direction. Suppose 𝑏 is the least upper bound of 𝑆 . Then, any 𝑏′ < 𝑏 is not an upper bound; that
is, ∀𝑏′ < 𝑏, ∃𝑥 ∈ 𝑆, 𝑥 > 𝑏′. For any 𝜖 > 0, let 𝑏′ = 𝑏 − 𝜖 . Since there exists some 𝑥 ∈ 𝑆 such that 𝑥 > 𝑏′, we have 𝑏 − 𝜖 < 𝑥 .
The proof is completed □

We now have all the tools we need to construct powers of the form 𝑥𝑛 with integer values of 𝑛. Before our construction,
we will give two important properties that we assert powers to satisfy:

Property 2.7. Suppose 𝑥 > 0 and 𝑎, 𝑏 ∈ R. Then, (𝑥𝑎)𝑏 = 𝑥𝑎𝑏 .

Property 2.8. Suppose 𝑥 > 0 and 𝑎, 𝑏 ∈ R. Then, 𝑥𝑎 · 𝑥𝑏 = 𝑥𝑎+𝑏 .

Definition 2.9. Suppose 𝑥 is real and 𝑛 ∈ Z. We define 𝑥𝑛 = 1 if 𝑛 = 0.3 Otherwise, we define recursively

𝑥𝑛+1 = 𝑛 · 𝑥𝑛 (𝑛 ∈ Z).

We will, however, begin to prove the binomial theorem.

Theorem 2.10. Suppose 𝑥,𝑦 ∈ R and 𝑛 ∈ N. Then,

(𝑥 + 𝑦)𝑛 =

𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
· 𝑥𝑛−𝑖 · 𝑦𝑖 .

Proof. We perform induction on 𝑛.

Basic step: When 𝑛 = 1, we have (𝑥 + 𝑦)𝑛 = 𝑥 + 𝑦 and
∑𝑛

𝑖=0
(
𝑛
𝑖

)
· 𝑥𝑛−𝑖 · 𝑦𝑖 = 𝑥 + 𝑦.

Inductive step: Suppose (𝑥 + 𝑦)𝑛 =
∑𝑖

𝑛=0
(
𝑛
𝑖

)
· 𝑥𝑛−𝑖 · 𝑦𝑖 for 𝑛 = 𝑘 (𝑘 ∈ N). Then,

(𝑥 + 𝑦)𝑘+1 = (𝑥 + 𝑦) · (𝑥 + 𝑦)𝑘

= (𝑥 + 𝑦) ·
𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
· 𝑥𝑘−𝑖𝑦𝑖

= 𝑥 ·
𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
· 𝑥𝑘−𝑖𝑦𝑖 + 𝑦 ·

𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
· 𝑥𝑘−𝑖𝑦𝑖

=

𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
· 𝑥𝑘+1−𝑖𝑦𝑖 +

𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
𝑥𝑘−𝑖𝑦𝑖+1

=

𝑘+1∑︁
𝑖=0

(
𝑘

𝑖

)
· 𝑥𝑘+1−𝑖𝑦𝑖 +

𝑘+1∑︁
𝑖=0

(
𝑘

𝑖 − 1

)
𝑥𝑘+1−𝑖𝑦𝑖

=

𝑘+1∑︁
𝑖=0

(
𝑘 + 1
𝑖

)
· 𝑥𝑘+1−𝑖𝑦𝑖 .

That is, the assumption is also true for 𝑛 = 𝑘 + 1. Therefore, by mathematical induction, the proof is finished. □

2.1 Useful Facts about Real Numbers

A very commonly used fact about real numbers is that every non-empty, finite set

3 Sequences & Series

3.1 Sequences and Limits

Our first big topic will be sequences and various ways to talk about how they behave at infinity. A sequence has a discrete
domain, so a lot of counting-related stuff can be useful here, I guess.

3By this definition, 00 = 1.
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Definition 3.1. A sequence (𝑥𝑛)𝑏𝑛=𝑎 (𝑎, 𝑏 ∈ N ∪ {−∞, +∞} and 𝑎 < 𝑏) of real numbers is a function from the subset of
integers between 𝑎 and 𝑏 (inclusive) to R.

As you probably expected, we’ll be playing around with limits a lot. But before all that, we need to establish the concept of
boundedness.

Definition 3.2. A sequence (𝑥𝑛)∞𝑛=1 of real numbers is said to be bounded from above iff there exists some𝑀 ∈ R such that
∀𝑛 ∈ N, 𝑥𝑛 ≤ 𝑀 . Similarly, (𝑥𝑛) is said to be bounded from below if there exists some 𝑀 ∈ R such that ∀𝑛 ∈ N, 𝑥𝑛 ≥ 𝑀 . We
say that (𝑥𝑛) is bounded iff it is bounded both from above and from below.

Now we can talk about the concept of Cauchy sequences —sequences whose terms eventually get arbitrarily close to one
another. We’ll see later that a Cauchy sequence is a convergent sequence in R. The fact that every Cauchy sequence in R
converges to some real number 𝑥 ∈ R is called the completeness of R as a metric space. This is equivalent to, e.g., the least
upper bound property (but I’ll be lazy and only prove the direction from the latter to the former).

Definition 3.3. A sequence (𝑥𝑛)∞𝑛=1 of real numbers is said to be a Cauchy sequence iff

∀𝜖 > 0, ∃𝑁 ∈ N,∀𝑚,𝑛 ∈ N,min{𝑚,𝑛} > 𝑁 ⇒ |𝑥𝑚 − 𝑥𝑛 | < 𝜖.

Now let’s define what it means for a sequence to converge to some number.

Definition 3.4. A sequence (𝑥𝑛)∞𝑛=1 is said to converge to 𝑥 ∈ R, denoted as lim𝑛→∞ 𝑥𝑛 = R, iff

∀𝜖 > 0, ∃𝑁 ∈ N,∀𝑛 ∈ N, 𝑛 > 𝑁 ⇒ |𝑥𝑛 − 𝑥 | < 𝜖.

A sequence (𝑥𝑛)∞𝑛=1 is said to be convergent iff there exists some 𝑥 ∈ R such that lim𝑛→∞ 𝑥𝑛 = 𝑥 .

It would be really nice to prove the obvious statement that a sequence is convergent if and only if it is a Cauchy sequence.
But we don’t have the entire toolbox yet. We will, however, state the “only if” direction.

Proposition 3.5. Let (𝑥𝑛)∞𝑛=1 be a convergent sequence. Then, it is a Cauchy sequence.

Proof. Suppose (𝑥𝑛)∞𝑛=1 converges to 𝑥 ∈ R. Let 𝜖 > 0. Then, fix 𝑁 ∈ N such that ∀𝑛 > 𝑁, |𝑥𝑛 − 𝑥 | < 𝜖/2. Choose arbitrary
𝑚,𝑛 > 𝑁 . Then,

|𝑥𝑚 − 𝑥𝑛 | = |𝑥𝑚 − 𝑥 + 𝑥 − 𝑥𝑛 |
≤ |𝑥𝑚 − 𝑥 | + |𝑥𝑛 − 𝑥 |

<
𝜖

2 + 𝜖2
= 𝜖.

The proof is completed. □

To use the symbol lim𝑥𝑛 like it’s a number (which we do all the time), we need to show that the limit of a sequence, if it
exists, is unique.

Proposition 3.6. Let (𝑥𝑛)∞𝑛=1 be a convergent sequence. Then, there exists a unique real number𝐿 ∈ R such that lim𝑛→∞ 𝑥𝑛 =

𝐿.

Proof. Suppose (𝑥𝑛)∞𝑛=1 is convergent. Let 𝐿1, 𝐿2 ∈ R both be limits of (𝑥𝑛). Suppose 𝜖 > 0. Then, there exists 𝑁1, 𝑁2 ∈ N
such that {

∀𝑛 > 𝑁1, |𝑥𝑛 − 𝐿1 | < 𝜖/2,
∀𝑛 > 𝑁2, |𝑥𝑛 − 𝐿2 | < 𝜖/2.

Then, |𝐿1 − 𝐿2 | ≤ |𝑥𝑛 − 𝐿2 | + |𝑥𝑛 − 𝐿2 | < 𝜖/2 + 𝜖/2 = 𝜖 . Since 𝜖 > 0 was chosen arbitrarily, we conclude that |𝐿1 − 𝐿2 | = 0,
and thus 𝐿1 = 𝐿2. The proof is completed. □
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Here, we used the fact that if a number is less than 𝜖 for any positive 𝜖 , then it can’t be positive. Formally,

∀𝑥 ∈ R,∀𝜖 > 0, 𝑥 < 𝜖 ⇒ 𝑥 ≤ 0.

Prove it if you want, it would be a one-liner. This really obvious fact, though, can be helpful since we play with 𝜖’s a lot in
limit proofs.

We can now talk about the relationship between convergence and boundedness: if a sequence converges, then it is bounded.
It’s kind of useless on its own, but the contrapositive is used a lot: any unbounded sequence diverges.

Proposition 3.7. Let (𝑥𝑛)∞𝑛=1 be a convergent sequence in R. Then, (𝑥𝑛) is bounded.

Proof. Suppose (𝑥𝑛) converges to 𝑥 . Then for 𝜖 = 1, there exists some 𝑁 ∈ N such that ∀𝑛 > 𝑁, |𝑥𝑛 − 𝑥 | < 1. Thus, for any
𝑛 > 𝑁 , |𝑥𝑛 | ≤ |𝑥𝑛 − 𝑥 + 𝑥 | = |𝑥𝑛 − 𝑥 | + |𝑥 | < 1 + |𝑥 |. Let 𝑀 = 1 + max{|𝑥1 | , |𝑥2 | , · · · , |𝑥𝑁 | , 1 + |𝑥 |} (A finite subset of real
numbers always has a maximum). Then, for any 𝑛 ∈ N, |𝑥𝑛 | < 𝑀 . The proof is completed. □

Now we can begin to build towards our first big theorem: the monotone convergence theorem. Of course, we need to first
define monotone sequences.

Definition 3.8. A sequence (𝑥𝑛)∞𝑛=1 is said to be monotone increasing iff ∀𝑛 ∈ N, 𝑥𝑛+1 ≥ 𝑥𝑛 . Similarly, (𝑥𝑛) is said to be
monotone decreasing iff ∀𝑛 ∈ N, 𝑥𝑛+1 ≤ 𝑥𝑛 . If the inequality is strict, then the sequence is said to be strictly increasing or
strictly decreasing, respectively.

Now, we can state the theorem!

Theorem 3.9 (Monotone Convergence Theorem). Suppose the sequence (𝑥𝑛)∞𝑛=1 is monotone. Then, it is convergent if and
only if it is bounded. Further, if it is bounded and monotone increasing, then

lim
𝑛→∞

𝑥𝑛 = sup{𝑥𝑛 | 𝑛 ∈ N};

if it is bounded and monotone decreasing, then

lim
𝑛→∞

𝑥𝑛 = inf{𝑥𝑛 | 𝑛 ∈ N}.

Proof. We first prove the “if” direction. Suppose (𝑥𝑛) is monotone increasing and bounded. Then, let 𝑆 = {𝑥𝑛 | 𝑛 ∈ N}.
Since (𝑥𝑛) is bounded, 𝑆 is bounded as well and thus admits the least upper bound 𝑏 ∈ R. Then, by Proposition 2.6, for any
𝜖 > 0, there exists some 𝑁 ∈ N such that 𝑏 − 𝑥𝑁 < 𝜖 . Let 𝜖 > 0 be arbitrary and fix 𝑁 . Then, for any 𝑛 > 𝑁 ,

|𝑥𝑛 − 𝑏 | = 𝑏 − 𝑥𝑛 ≤ 𝑏 − 𝑥𝑁 < 𝜖,

so (𝑥𝑛) converges to 𝑏. If (𝑥𝑛) is monotone decreasing, we apply the same argument and conclude that (𝑥𝑛) converges to
the greatest lower bound of 𝑆 .

We now show the “only if” direction. Suppose (𝑥𝑛) is monotone increasing and converges to 𝑥 . If (𝑥𝑛) is not bounded
from above, then by Proposition 3.7, it is not convergent, which is a contradiction. Therefore, (𝑥𝑛) is bounded from above.
Similarly, if (𝑥𝑛) is monotone decreasing and converges to 𝑥 , we may apply the same argument to conclude that (𝑥𝑛) is
bounded.

□

Let’s also talk about the𝑘-tail of the sequence, which, in many ways, exhibit many similar behaviors to the original sequence.
And we’ll see later on that it’s actually a special type of subsequences.

Definition 3.10. Let (𝑥𝑛)∞𝑛=1 be a sequence. The 𝑘-tail (𝑘 ∈ Z≥0) of (𝑥𝑛) is defined as the sequence (𝑥𝑚)∞𝑚=𝑘+1.

We now state the following relationship:
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Proposition 3.11. Let (𝑥𝑛)∞𝑛=1 be a sequence. The following conditions are equivalent:

• (𝑥𝑛) is bounded;

• The 𝑘-tail of (𝑥𝑛) is bounded for some 𝑘 ∈ Z≥0;

• The 𝑘-tail of (𝑥𝑛) is bounded for any 𝑘 ∈ Z≥0.

This is obvious from the definition of boundedness of sequences. In fact, we can replace the word “bounded” with “conver-
gent” throughout, and the statement is still valid.

Proposition 3.12. Let (𝑥𝑛)∞𝑛=1 be a sequence. The following conditions are equivalent:

• (𝑥𝑛) is convergent;

• The 𝑘-tail of (𝑥𝑛) is convergent for some 𝑘 ∈ Z≥0;

• The 𝑘-tail of (𝑥𝑛) is convergent for any 𝑘 ∈ Z≥0.

Clearly, the third statement implies the second. So we’ll start with the latter.

Proof. Clearly, the third statement implies the second.

We now show that the second statement implies the first. Suppose for some 𝑘 ∈ Z≥0, the 𝑘-tail of (𝑥𝑛) converges to 𝑥 ∈ R.
That is, for any 𝜖 > 0, there exists some 𝑁 ∈ N, denoted as 𝑁𝜖 , such that ∀𝑛 > 𝑁, |𝑥𝑛+𝑘 − 𝑥 | < 𝜖 . Suppose 𝜖 > 0 is arbitrary.
Then, for any 𝑛 > 𝑁𝜖 + 𝑘 , let 𝑛′ = 𝑛 − 𝑘 > 𝑁𝜖 , which implies

|𝑥𝑛 − 𝑥 | = |𝑥𝑛′+𝑘 − 𝑥 | < 𝜖.

We conclude by showing that the first statement implies the third. Suppose (𝑥𝑛) converges to 𝑥 . Choose any 𝑘 ∈ Z≥0.
For any 𝜖 > 0, there exists some 𝑁𝜖 ∈ N such that ∀𝑛 > 𝑁𝜖 , |𝑥𝑛 − 𝑥 | < 𝜖 . Fixing 𝑛, for any 𝑛′ = 𝑛 + 𝑘 , 𝑛′ > 𝑁𝜖 also, so
|𝑥𝑛′ − 𝑥 | < 𝜖 . The proof is completed. □

We now define what a subsequence is.

Definition 3.13. Suppose (𝑥𝑛)∞𝑛=1 is a sequence. A subsequence (𝑥𝑛𝑖 )∞𝑖=1 of (𝑥𝑛) is the composition of the function charac-
terizing the sequence with some strictly increasing function 𝑛 : N→ N.

There are many ways whereby sequences are related to its subsequences.

Proposition 3.14. Suppose (𝑥𝑛)∞𝑛=1 is a bounded sequence. Then, any subsequence (𝑥𝑛𝑖 )∞𝑖=1 of (𝑥𝑛) is also bounded.

Proof. Fix 𝑀 > 0 such that ∀𝑛 ∈ N, |𝑥𝑛 | < 𝑀 . Then, ∀𝑖, 𝑛𝑖 ∈ N, so
��𝑥𝑛𝑖 �� < 𝑀 . The proof is completed. □

Of course, if a subsequence is bounded, the original sequence does not necessarily need to be. This is different from the case
for 𝑘-tails, since any 𝑘-tail has to encompass all terms eventually. On the contrary, consider (𝑥𝑛) with 𝑥𝑛 = 𝑛2 if 𝑛 is odd
and 𝑥𝑛 = 0 if 𝑛 is even. If 𝑛𝑖 = 2𝑖 , then 𝑥𝑛𝑖 = 𝑥2𝑖 ≡ 0 is obviously bounded, but (𝑥𝑛) is unbounded.

Proposition 3.15. Suppose (𝑥𝑛)∞𝑖=1 converges to 𝑥 . Then, any subsequence (𝑥𝑛𝑖 )∞𝑖=1 also converges to 𝑥 .

Proof. Suppose (𝑥𝑛)∞𝑛=1 converges to 𝑥 . For any 𝜖 > 0, there exists 𝑁 ∈ N such that ∀𝑛 > 𝑁, |𝑥𝑛 − 𝑥 | < 𝜖 . By induction, we
have 𝑛𝑖 ≥ 𝑖 , so ∀𝑖 > 𝑁 ,𝑛𝑖 > 𝑖 and thus

��𝑥𝑛𝑖 − 𝑥 �� < 𝜖 . The proof is completed. □

This seems pretty straightforward and not all that interesting. But if we think about the contrapositive, we get quite a couple
useful corollaries.
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Corollary 3.16. Suppose (𝑥𝑛)∞𝑛=1 is a sequence. If any subsequence of (𝑥𝑛) diverges, then (𝑥𝑛) diverges. If two convergent
subsequence of (𝑥𝑛) converge to different values, then (𝑥𝑛) diverges.

This is a really quick test for which sequences cannot converge. For example, to show that 𝑥𝑛 = (−1)𝑛 diverges, we
can simply note that 𝑥2𝑛 = 1 converges to 1 but 𝑥2𝑛−1 = −1 converges to −1. So by Corollary 3.16, the sequence (𝑥𝑛)
diverges.

Before the end of this section, we will prove the famous Bolzano–Weierstrass Theorem.

Theorem 3.17 (Bolzano–Weierstrass). Suppose (𝑥𝑛)∞𝑛=1 is a bounded sequence. Then, there exists a monotone subsequence
(𝑥𝑛𝑖 )∞𝑖=1 of (𝑥𝑛) that is convergent.

Proof. We say that 𝑛 ∈ N is a peak iff ∀𝑚 > 𝑛, 𝑥𝑚 ≤ 𝑥𝑛 .

Suppose that (𝑥𝑛) has infinitely many peaks, 𝑛1, 𝑛2, · · · . Then, (𝑥𝑛𝑖 )∞𝑖=1 is a monotone decreasing sequence. Then, by Theo-
rem 3.9, (𝑥𝑛𝑖 ) converges.

Suppose that (𝑥𝑛) has finitely many, but non-zero, peaks, 𝑛1, · · · , 𝑛𝑁 . Let 𝑟1 = 𝑛𝑁 + 1. Since 𝑛𝑁 is the final peak, 𝑟1 > 𝑛𝑁

is not a peak. Thus, ∃𝑚 > 𝑟1, 𝑥𝑚 > 𝑥𝑟1 . Let 𝑟2 = 𝑚 > 𝑟1. We may now repeat the process recursively for 𝑖 ∈ N: since 𝑛𝑁 is
the final peak, 𝑟𝑖 > · · · > 𝑟1 > 𝑛𝑁 is not a peak. Thus, ∃𝑚 > 𝑟𝑖 , 𝑥𝑚 > 𝑥𝑟𝑖 . Let 𝑟𝑖+1 = 𝑚 > 𝑟𝑖 . Thus, (𝑥𝑟𝑖 )∞𝑖=1 is a monotone
increasing subsequence. We similarly conclude that (𝑥𝑟𝑖 ) converges.

Suppose now that (𝑥𝑛) has no peaks. Then, ∀𝑛 ∈ N, ∃𝑚 > 𝑛, 𝑥𝑚 > 𝑥𝑛 . Let 𝑟1 = 1. Since 𝑟1 ∈ N, there exists some𝑚 > 𝑟1
such that 𝑥𝑚 > 𝑥𝑟1 . Let 𝑟2 =𝑚 ∈ N. We may now repeat the process recursively for 𝑖 ∈ N: since 𝑟𝑖 ∈ N, there exists𝑚 > 𝑟𝑖

such that 𝑥𝑚 > 𝑥𝑟𝑖 . Let 𝑟𝑖+1 =𝑚 ∈ N. Thus, (𝑥𝑟𝑖 )∞𝑖=1 is a monotone increasing subsequence. We similarly conclude that (𝑥𝑟𝑖 )
converges. □

To finish this section, let’s prove that a sequence is convergent if it is a Cauchy sequence.

Theorem 3.18. Let (𝑥𝑛)∞𝑛=1 be a sequence. (𝑥𝑛) is convergent if and only it is a Cauchy sequence.

Proof. From Proposition 3.5, we already have the “only if” direction. It suffices to now show the “if” direction holds.

Let (𝑥𝑛)∞𝑛=1 be a Cauchy sequence. We first show that (𝑥𝑛) must be bounded. Fix 𝜖 = 1. Then, there exists 𝑁 ∈ N such that
∀𝑚,𝑛 > 𝑁 , |𝑥𝑚 − 𝑥𝑛 | < 1. Let 𝑚 = 𝑁 + 1. Then, ∀𝑛 > 𝑚, |𝑥𝑚 − 𝑥𝑛 | < 1, so 𝑥𝑚 − 1 < 𝑥𝑛 < 𝑥𝑚 + 1. So the 𝑁 -tail of the
sequence, (𝑥𝑛)∞𝑛=𝑁+1 is bounded, and thus (𝑥𝑛) is bounded by Proposition 3.11.

Therefore, by Theorem 3.17, there exists a monotone subsequence (𝑥𝑛𝑖 )∞𝑖=1 (1 ≤ 𝑛1 < 𝑛2 < · · · ). Assume without loss of
generality that the subsequence is monotone increasing. The limit 𝑥 ∈ R is further equal to sup 𝑆 , by Theorem 3.9, where
𝑆 ≔ {𝑥𝑛𝑖 | 𝑖 ∈ N}. Choose an arbitrary 𝜖 > 0. Since (𝑥𝑛) is Cauchy, there exists some 𝑁 ∈ N such that for any𝑚,𝑛 > 𝑁 ,
|𝑥𝑚 − 𝑥𝑛 | < 𝜖/2. Fix 𝑛. Then, for any 𝑚 > 𝑛 > 𝑁 , 𝑥𝑛 − 𝜖/2 < 𝑥𝑚 < 𝑥𝑛 + 𝜖/2, so the 𝑛-tail of (𝑥𝑚) is bounded within
(𝑥𝑛 − 𝜖/2, 𝑥𝑛 + 𝜖/2). Note that the limit 𝑥 ∈ (𝑥𝑛 − 𝜖/2, 𝑥𝑛 + 𝜖/2) also, since some subsequence of (𝑥𝑛𝑖 ) (discarding terms
before 𝑛 + 1) must be a subsequence of (𝑥𝑚)∞𝑚=𝑛+1. Therefore, for any𝑚 > 𝑛, we have

|𝑥𝑚 − 𝑥 | = |𝑥𝑚 − 𝑥𝑛 + 𝑥𝑛 − 𝑥 | ≤ |𝑥𝑚 − 𝑥𝑛 | + |𝑥𝑛 − 𝑥 | < 𝜖/2 + 𝜖/2 = 𝜖,

which completed the proof. □

3.2 More on Sequence Limits

Limits are exhausting but they’re a foundational piece of real analysis. Anyways, let’s start with the Squeeze Theo-
rem.

Theorem 3.19 (Squeeze Theorem). Suppose (𝑥𝑛), (𝑎𝑛), and (𝑏𝑛) are sequences with

𝑎𝑛 ≤ 𝑥𝑛 ≤ 𝑏𝑛
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for any 𝑛 ∈ N. If (𝑎𝑛) and (𝑏𝑛) converge to the same value, then (𝑥𝑛) too converges to that value.

Proof. Suppose (𝑎𝑛) and (𝑏𝑛) both converge to 𝑥 and 𝑎𝑛 ≤ 𝑥𝑛 ≤ 𝑏𝑛 for any 𝑛 ∈ N. Suppose 𝜖 > 0. Fix 𝑁1, 𝑁2 ∈ N such that{
∀𝑛 > 𝑁1, |𝑎𝑛 − 𝑥 | < 𝜖,
∀𝑛 > 𝑁2, |𝑏𝑛 − 𝑥 | < 𝜖.

Let 𝑁 = max{𝑁1, 𝑁2}. Then, for any 𝑛 > 𝑁 , we have |𝑎𝑛 − 𝑥 | < 𝜖 , or 𝑥 − 𝜖 < 𝑎𝑛 , and |𝑏𝑛 − 𝑥 | < 𝜖 , or 𝑏𝑛 < 𝑥 + 𝜖 . Since

𝑥 − 𝜖 < 𝑎𝑛 ≤ 𝑥𝑛 ≤ 𝑏𝑛 < 𝑥 − 𝜖,

we conclude that |𝑥𝑛 − 𝑥 | < 𝜖 , which completes the proof. □

Similar but equally powerful is the fact that limits, if they exists, preserve non-strict inequalities.

Proposition 3.20. Let (𝑥𝑛)∞𝑛=1 and (𝑦𝑛)∞𝑛=1 be convergent sequences with 𝑥𝑛 ≤ 𝑦𝑛 for any 𝑛 ∈ N. Then, lim𝑥𝑛 ≤ lim𝑦𝑛 .

Proof. Let 𝑥 = lim𝑥𝑛 and 𝑦 = lim𝑦𝑛 . Suppose 𝜖 > 0. Fix 𝑁1, 𝑁2 ∈ N such that ∀𝑛 > 𝑁1, |𝑥𝑛 − 𝑥 | < 𝜖/2 and ∀𝑛 >

𝑁2, |𝑦𝑛 − 𝑦 | < 𝜖/2. With 𝑁 ≔ max{𝑁1, 𝑁2}, we have 𝑥𝑛 − 𝑥 < 𝜖/2 and 𝑦 − 𝑦𝑛 < 𝜖/2. Then, adding the two gives
𝑥𝑛 − 𝑦𝑛 − 𝑥 + 𝑦 < 𝜖 , or 𝑥𝑛 − 𝑦𝑛 < 𝑥 − 𝑦 + 𝜖 , equivalently. Since 𝑥𝑛 ≤ 𝑦𝑛 for all 𝑛 ∈ N, we have 0 ≤ 𝑦𝑥 − 𝑥𝑛 and hence
0 < 𝑦 − 𝑥 + 𝜖 by transitivity. Therefore, 𝑥 − 𝑦 < 𝜖 for any 𝜖 > 0, so 𝑥 − 𝑦 ≤ 0. Thus, 𝑥 ≤ 𝑦. □

An important corollary immediately follows.

Corollary 3.21. Suppose (𝑥𝑛)∞𝑛=1 is a convergent sequence. If all its terms are non-negative, then the limit is also non-
negative. Further, if the limit is positive, then the 𝑘-tail of (𝑥𝑛) is always positive for some 𝑘 ∈ N.

Proof. Suppose (𝑥𝑛) is a convergent sequence with all terms non-negative. Then, 𝑥𝑛 ≥ 0 for all 𝑛 ∈ N. Thus,

lim
𝑛→∞

𝑥𝑛 ≥ lim
𝑛→∞

0 = 0.

Suppose (𝑥𝑛) is a convergent sequence with a positive limit 𝑥 B lim𝑥𝑛 > 0. Suppose for the sake of contradiction that
any 𝑘-tail of (𝑥𝑛) contains some non-positive term 𝑥𝑛𝑘 ≤ 0, where 𝑛𝑘 ≥ 𝑘 . Then, there exists some subsequence (𝑥𝑛𝑖 )∞𝑖=1
of (𝑥𝑛) with all non-positive terms, which has a non-positive limit. However, by Proposition 3.15, 𝑥𝑛𝑖 → 𝑥 > 0, which is a
contradiction. The proof is finished. □

We now state the continuity of algebraic operations:

Proposition 3.22. Suppose (𝑥𝑛) and (𝑦𝑛) are convergent sequences with limits 𝑥 and 𝑦 respectively. Then,

• (𝑥𝑛 + 𝑦𝑛) converges to 𝑥 + 𝑦;

• (𝑥𝑛 − 𝑦𝑛) converges to 𝑥 − 𝑦;

• (𝑥𝑛 · 𝑦𝑛) converges to 𝑥 · 𝑦;

• (𝑥𝑛/𝑦𝑛) converges to 𝑥/𝑦, provided that (i) 𝑦 ≠ 0 and (ii) 𝑦𝑛 is never zero for any 𝑛 ∈ N.

Let’s first prove that the limit of the sum/different of two sequences equals the sum/difference of the respective limits,
provided they exist.

Proof. Suppose (𝑥𝑛) and (𝑦𝑛) are convergent sequences with limits 𝑥 and 𝑦 respectively. Let 𝜖 > 0. Fix 𝑁1, 𝑁2 ∈ N such that
∀𝑛 > 𝑁1, |𝑥𝑛 − 𝑥 | < 𝜖/2 and ∀𝑛 > 𝑁2, |𝑦𝑛 − 𝑦 | < 𝜖/2. Let 𝑁 ≔ max{𝑁1, 𝑁2}. Then,

| (𝑥𝑛 + 𝑦𝑛) − (𝑥 + 𝑦) | = | (𝑥𝑛 − 𝑥) + (𝑦𝑛 − 𝑦) |

8



≤ |𝑥𝑛 − 𝑥 | + |𝑦𝑛 − 𝑦 |
< 𝜖/2 + 𝜖/2
= 𝜖,

and

| (𝑥𝑛 − 𝑦𝑛) − (𝑥 − 𝑦) | = | (𝑥𝑛 − 𝑥) + (𝑦 − 𝑦𝑛) |
≤ |𝑥𝑛 − 𝑥 | + |𝑦𝑛 − 𝑦 |
= 𝜖.

The proof is finished. □

We now show that the limit of the product of two sequences equals the product of the respective limits, provided they
exist.

Proof. Suppose (𝑥𝑛) and (𝑦𝑛) are convergent sequences with limits 𝑥 and 𝑦 respectively. Suppose 𝜖 > 0 is given. Let
𝐾 ≔ max{|𝑥 | , |𝑦 | , 𝜖/3, 1}. Choose 𝑁1, 𝑁2 ∈ N such that ∀𝑛 > 𝑁1, |𝑥𝑛 − 𝑥 | < 𝜖/3𝐾 and ∀𝑛 > 𝑁2, |𝑦𝑛 − 𝑦 | < 𝜖/3𝐾 . Then,

|𝑥𝑛 · 𝑦𝑛 − 𝑥 · 𝑦 | = | (𝑥𝑛 − 𝑥 + 𝑥) (𝑦𝑛 − 𝑦 + 𝑦) − 𝑥𝑦 |
= |𝑥𝑛 − 𝑥 | · |𝑦𝑛 − 𝑦 | + |𝑦 | · |𝑥𝑛 − 𝑥 | + |𝑥 | · |𝑦𝑛 − 𝑦 |
< 𝜖/3𝐾 · 𝜖/3𝐾 + 𝐾 · 𝜖/3𝐾 + 𝐾 · 𝜖/3𝐾
≤ 𝜖/3 + 𝜖/3 + 𝜖/3
= 𝜖.

□

Before we prove division, we give the following proposition.

Proposition 3.23. Suppose no term of (𝑦𝑛)∞𝑛=1 is zero and 𝑦𝑛 converges to 𝑦 ∈ R. Then, (1/𝑦𝑛) converges to 1/𝑦.

Proof. Suppose no term of (𝑦𝑛)∞𝑛=1 is zero and 𝑦𝑛 converges to 𝑦 ∈ R. Let 𝑏 = min{|𝑦 |2 𝜖/2, |𝑦 | /2} > 0. Let 𝜖 > 0. Then,
there exists some 𝑁 ∈ N such that ∀𝑛 > 𝑁, |𝑦𝑛 − 𝑦 | < 𝑏. Then, for any 𝑛 > 𝑁 , |𝑦𝑛 − 𝑦 | < 𝑏 ≤ |𝑦 | /2, so

|𝑦 | = |𝑦 − 𝑦𝑛 + 𝑦𝑛 | ≤ |𝑦𝑛 − 𝑦 | + |𝑦𝑛 | <
|𝑦 |
2 + |𝑦𝑛 | .

Thus, |𝑦 | /2 < |𝑦𝑛 |, or equivalently, 1/|𝑦𝑛 | < 2/|𝑦 |. Therefore,���� 1
𝑦𝑛

− 1
𝑦

���� = ����𝑦𝑛 − 𝑦
𝑦 · 𝑦𝑛

����
<

|𝑦𝑛 − 𝑦 |
|𝑦 | · 2

|𝑦 |

<
2𝑏
𝑦2

< 𝜖.

The proof is finished. □

If we multiply (𝑥𝑛) and (1/𝑦𝑛), we obtain the proof for the fourth statement.

Now we can establish most convergence tests for sequences.

9



Proposition 3.24. Suppose (𝑥𝑛)∞𝑛=1 is a sequence. Suppose (𝑎𝑛)∞𝑛=1 converges to 0 and further, for some 𝑥 ∈ R,

|𝑥𝑛 − 𝑥 | ≤ 𝑎𝑛 .

Then, (𝑥𝑛) converges to 𝑥 .

Proof. Suppose (𝑥𝑛)∞𝑛=1 is a sequence. Suppose (𝑎𝑛)∞𝑛=1 converges to 0 and further, for some 𝑥 ∈ R,

|𝑥𝑛 − 𝑥 | ≤ 𝑎𝑛 .

Suppose 𝜖 > 0. Fix some 𝑁 ∈ N such that ∀𝑛 > 𝑁, |𝑎𝑛 | < 𝜖 . Then, for any 𝑛 > 𝑁 , we have

|𝑥𝑛 − 𝑥 | ≤ 𝑎𝑛 < 𝜖.

The proof is finished. □

Lemma 3.25 (Ratio Test for Sequences). Let (𝑥𝑛)∞𝑛=1 be a sequence with no zero terms. Suppose

𝐿 = lim
𝑛→∞

|𝑥𝑛+1 |
|𝑥𝑛 |

exists. Then, (𝑥𝑛) converges to 0 if 𝐿 < 1 and diverges if 𝐿 > 1. If 𝐿 = 1, the ratio test is inconclusive.

Proof. Suppose (𝑥𝑛) is a sequence with no zero terms and 𝐿 = lim𝑛→∞ |𝑥𝑛+1 | /|𝑥𝑛 | exists.

Suppose 𝐿 < 1. Since |𝑥𝑛+1/𝑥𝑛 | ≥ 0, we conclude from Proposition 3.20 that 𝐿 ≥ 0. Choose some arbitrary 𝑟 such that
0 ≤ 𝐿 < 𝑟 < 1. We then compare (𝑥𝑛) to (𝑟𝑛). Since 𝑟 − 𝐿 > 0, there exists 𝑁 ∈ N such that ∀𝑛 > 𝑁, | |𝑥𝑛+1/𝑥𝑛 | − 𝐿 | < 𝑟 − 𝐿.
Thus, for 𝑛 > 𝑁 , |𝑥𝑛+1/𝑥𝑛 | < 𝑟 . Therefore,

|𝑥𝑛 | = |𝑥𝑀 | · 𝑥𝑀+1
𝑥𝑀

· 𝑥𝑀+2
𝑥𝑀+1

· · · 𝑥𝑛

𝑥𝑛−1
< |𝑥𝑀 | ·

(𝑛−𝑀 ) factors︷    ︸︸    ︷
𝑟 · 𝑟 · · · 𝑟 = |𝑥𝑀 | 𝑟−𝑀 · 𝑟𝑛 .

Note that |𝑥𝑀 | 𝑟−𝑀𝑟𝑛 is a positive sequence tending to 0, so by Proposition 3.24, we conclude that lim𝑥𝑛 = 0.

Suppose 𝐿 > 1. Choose 𝑟 such that 1 < 𝑟 < 𝐿. Since 𝐿 − 𝑟 > 0, there exists some 𝑁 ∈ N such that ∀𝑛 > 𝑁, | |𝑥𝑛+1/𝑥𝑛 | − 𝐿 | <
𝐿 − 𝑟 , so |𝑥𝑛+1/𝑥𝑛 | > 𝑟 . Similarly, for 𝑛 > 𝑁 , we have

|𝑥𝑛 | = |𝑥𝑀 | 𝑟−𝑀 · 𝑟𝑛 .

Since the sequence (|𝑥𝑀 | 𝑟−𝑀 · 𝑟𝑛)∞𝑛=1 is unbounded, (𝑥𝑛) must also be unbounded, which therefore diverges according to
Proposition 3.7. □

3.3 Limit Superior and Limit Inferior

Let’s now talk about the limit superior and the limit inferior.

Definition 3.26. Suppose (𝑥𝑛)∞𝑛=1 is a sequence. Define the sequences

𝑎𝑛 ≔ sup{𝑥𝑘 | 𝑘 ≥ 𝑛} and 𝑏𝑛 ≔ inf{𝑥𝑘 | 𝑘 ≥ 𝑛}.

Then, when the following limits exist, we define the limit superior of (𝑥𝑛) as

lim sup
𝑛→∞

𝑥𝑛 B lim
𝑛→∞

𝑎𝑛

and the limit inferior of (𝑥𝑛) as
lim inf
𝑛→∞

𝑥𝑛 B lim
𝑛→∞

𝑏𝑛 .
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Figure 1: An illustration of the limit superior and the limit inferior. (𝑥𝑛) is in dots; (𝑎𝑛) is in circles; (𝑏𝑛) is in diamonds.
This is Fig. 2.5 from [1].

The limit superior and the limit inferior are like weaker ways to describe this “limiting” behavior of a sequence (𝑥𝑛) (see
Fig. 1): it’s the “upper bound” and the “lower bound” of the sequence as 𝑛 → ∞, respectively. As we’ll see, the limit superior
and the limit inferior of a sequence (𝑥𝑛) are guaranteed to exist if (𝑥𝑛) is bounded.

Proposition 3.27. Suppose (𝑥𝑛)∞𝑛=1 is a bounded sequence. Let (𝑎𝑛) and (𝑏𝑛) be defined as in Definition 3.26. Then,

• 𝑎𝑛 ≤ 𝑥𝑛 ≤ 𝑏𝑛 for all 𝑛 ∈ N;

• (𝑎𝑛) is monotone decreasing and (𝑏𝑛) is monotone increasing;

• The limit superior and the limit inferior of (𝑥𝑛) exist; that is, (𝑎𝑛) and (𝑏𝑛) both converge;

• The limit inferior is no greater than the limit superior; that is, lim inf 𝑥𝑛 ≤ lim sup𝑥𝑛 .

Proof. Let (𝑥𝑛)∞𝑛=1 be bounded. Let 𝑎𝑛 ≔ sup{𝑥𝑘 | 𝑘 ≥ 𝑛} and 𝑎𝑛 ≔ inf{𝑥𝑘 | 𝑘 ≥ 𝑛}.

Denote with 𝑆 the set {𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2, · · · }. Then, 𝑎𝑛 = sup 𝑆 and 𝑏𝑛 = inf 𝑆 . Thus, 𝑏𝑛 ≤ 𝑥𝑛 ≤ 𝑎𝑛 .

Choose an arbitrary 𝑛 ∈ N. Observe that {𝑥𝑘 | 𝑘 ≥ 𝑛 + 1} ⊆ {𝑥𝑘 | 𝑘 ≥ 𝑛}, so the supremum of the former (i.e., 𝑎𝑛+1) is no
greater than that of the latter (i.e., 𝑎𝑛). Thus, (𝑎𝑛) is monotone decreasing. Similarly, we conclude that (𝑏𝑛) is monotone
increasing.

Because each term of (𝑎𝑛) is the supremum of {𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2, · · · }, we have 𝑥𝑛 ≤ 𝑎𝑛 . Suppose (𝑥𝑛) is bounded from below
by 𝑀 ; that is, ∀𝑛 ∈ N, 𝑥𝑛 ≥ 𝑀 . Then, 𝑎𝑛 ≥ 𝑀 . Thus, 𝑎𝑛 is bounded from below. Since (𝑎𝑛) is decreasing, it must be bounded
from above by the first term 𝑎1. Therefore, (𝑎𝑛) is bounded. Since (𝑎𝑛) is monotone decreasing, we conclude that (𝑎𝑛)
converges. Similarly, we deduce that (𝑏𝑛) converges.

Since ∀𝑛 ∈ N, 𝑏𝑛 ≤ 𝑎𝑛 , by Proposition 3.20, we have lim𝑏𝑛 ≤ lim𝑎𝑛 , namely, lim inf 𝑥𝑛 ≤ lim sup𝑎𝑛 . The proof is
completed. □

Now that I think about it, I should’ve put Bolzano-Weierstrass after all this talk about limit superiors and limit inferiors…
but anyways,

Proposition 3.28. Let (𝑥𝑛) be a bounded sequence. Then there exists a subsequence (𝑥𝑚𝑖
)∞𝑖=1 that converges to lim sup𝑛→∞ 𝑥𝑛 ;

similarly, there exists a subsequence (𝑥𝑛𝑖 )∞𝑖=1 that converges to lim inf𝑛→∞ 𝑥𝑛 .

Proof. We define (𝑎𝑛)∞𝑛=1 and (𝑏𝑛)∞𝑛=1 as usual:

𝑎𝑛 B sup{𝑥𝑘 | 𝑘 ≥ 𝑛}; 𝑏𝑛 B inf{𝑥𝑘 | 𝑘 ≥ 𝑛}.
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Let 𝑎 = lim𝑎𝑛 and 𝑏 = lim𝑏𝑛 (convergence guaranteed by Proposition 3.27). We construct the subsequence (𝑥𝑛𝑖 )∞𝑖=1 induc-
tively. Let 𝑛1 = 1. Suppose 𝑛𝑖 has been defined for 𝑖 = 1, 2, · · · , 𝑘 (𝑘 ∈ N). Then, for some 𝑛′ > 𝑛𝑘 ,

𝑎𝑛𝑘+1 − 𝑥𝑛′ <
1

𝑘 + 1 ,

because 𝑎𝑛𝑘+1 is the supremum of the set {𝑥𝑛𝑘+1, 𝑥𝑛𝑘+2, · · · }, which allows us to use Proposition 2.6. Let 𝑛𝑘+1 = 𝑛′, which
completes the definition of (𝑥𝑛𝑖 )∞𝑖=1.

Note that 𝑎𝑛𝑖 ≤ 𝑎𝑛𝑖−1+1 for any integer 𝑖 ≥ 2: since 𝑛𝑖 > 𝑛𝑖−1, we have 𝑛𝑖 ≥ 𝑛𝑖−1 + 1, so 𝑎𝑛𝑖 ≤ 𝑎𝑛𝑖−1+1.

Observe that for any 𝑖 = 2, 3, · · · , ��𝑎𝑛𝑖 − 𝑥𝑛𝑖 �� = 𝑎𝑛𝑖 − 𝑥𝑛𝑖
≤ 𝑎𝑛𝑖−1+1 − 𝑥𝑛𝑖

<
1
𝑖
.

Suppose 𝜖 > 0. By the Archimedean property of real numbers, there exists some𝑀 ∈ N such that𝑀 ·𝜖 > 2; that is, 𝜖 > 2/𝑀 .
Then, fix 𝑁 ∈ N such that ∀𝑛 > 𝑁, |𝑎𝑛 − 𝑎 | = 𝑎𝑛 − 𝑎 < 1/𝑀 . For any 𝑖 > max{𝑁,𝑀},

0 ≤ 𝑎𝑛𝑖 − 𝑎 ≤ 𝑎𝑖 − 𝑎 < 1/𝑀,��𝑎𝑛𝑖 − 𝑥𝑛𝑖 �� < 1/𝑖 < 1/𝑀.

Therefore, ��𝑥𝑛𝑖 − 𝑎�� ≤ ��𝑥𝑛𝑖 − 𝑎𝑛𝑖 �� + (𝑎𝑛𝑖 − 𝑎) < 2/𝑀 < 𝜖.

The proof is finished. □

If towards infinity, (𝑎𝑛) and (𝑏𝑛) defined as usual for some bounded sequence (𝑥𝑛) converge to the same number, then the
sequence converges. This is a useful result since the existence of lim sup’s and lim inf’s only requires that the sequence is
bounded.

Proposition 3.29. Suppose (𝑥𝑛)∞𝑛=1 is a bounded sequence of real numbers. Then, (𝑥𝑛) converges if and only if lim sup𝑛→∞ 𝑥𝑛 =

lim inf𝑛→∞ 𝑥𝑛 . Further, if (𝑥𝑛) converges, it must converge to the limit superior and the limit inferior.

Proof. We define (𝑎𝑛)∞𝑛=1 and (𝑏𝑛)∞𝑛=1 as usual:

𝑎𝑛 B sup{𝑥𝑘 | 𝑘 ≥ 𝑛}; 𝑏𝑛 B inf{𝑥𝑘 | 𝑘 ≥ 𝑛}.

“If” Direction. Suppose (𝑥𝑛) is bounded and lim sup𝑥𝑛 = lim inf 𝑥𝑛 ; that is, lim𝑎𝑛 = lim𝑏𝑛 . Note that for any 𝑛 ∈ N,
𝑎𝑛 ≤ 𝑥𝑛 ≤ 𝑏𝑛 . Therefore, by the Squeeze Theorem (Theorem 3.19), lim𝑥𝑛 = lim𝑎𝑛 = lim𝑏𝑛 .

“Only If” Direction. Suppose (𝑥𝑛) converges to 𝑥 ∈ R. For 𝜖 > 0, fix 𝑁 ∈ N such that ∀𝑛 > 𝑁, |𝑥𝑛 − 𝑥 | < 𝜖/2. Thus,
𝑥 − 𝜖/2 < 𝑥𝑛 < 𝑥 + 𝜖/2. Define the sets 𝑆𝑛 B {𝑥𝑛, 𝑥𝑛+1, · · · } for 𝑛 ∈ N. Then, for any 𝑛 > 𝑁 , 𝑎𝑛 = sup 𝑆𝑛 ∋ 𝑥𝑛 , so
𝑎𝑛 ≥ 𝑥𝑛 > 𝑥 −𝜖/2. Further, observe that 𝑥 +𝜖/2 is an upper bound of 𝑆𝑛 for any 𝑛 > 𝑁 . Because 𝑎𝑛 is the least upper bound
of 𝑆𝑛 , 𝑎𝑛 ≤ 𝑥 + 𝜖/2. Therefore, |𝑎𝑛 − 𝑥 | ≤ 𝜖/2 < 𝜖 . The proof is finished. □

I really, really hate that whole 𝜖/2 shii… It’s grossly inelegant. Everyone knows |𝑎𝑛 − 𝑥 | ≤ 𝜖 literally has no difference from
|𝑎𝑛 − 𝑥 | < 𝜖 in this kind of proofs, but whatever.

3.4 Infinite Series

We’ll give the usual infinite series definition for convergence.
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Definition 3.30. Let (𝑥𝑛)∞𝑛=1 be a sequence. The formal object

𝑥1 + 𝑥2 + · · · or
∞∑︁
𝑛=1

𝑥𝑛

is said to be an infinite series.

Let 𝑆𝑛 B
∑𝑛

𝑖=1 𝑥𝑖 . If 𝑆𝑛 converges to 𝑥 ∈ R, we say that
∞∑︁
𝑛=1

𝑥𝑛 = lim
𝑛→∞

𝑆𝑛 .

Otherwise, the formal object named the series is said to diverge.

We’ll first talk about geometric series.

Proposition 3.31 (Geometric Series). Suppose 𝑟 ∈ R. Then, the infinite series
∑∞

𝑛=0 𝑟
𝑛 converges if and only if |𝑟 | < 1.

Further, if |𝑟 | < 1, then
∞∑︁
𝑛=0

𝑟𝑛 =
1

1 − 𝑟 .

Proof. Define 𝑆𝑛 =
∑𝑛

𝑖=0 𝑟
𝑛 . When 𝑟 = 1, (𝑆𝑛) is unbounded and thus diverges. Otherwise, 𝑆𝑛 = (1 − 𝑟𝑛)/(1 − 𝑟 ).

The series then converges iff the following limit exists:

lim
𝑛→∞

1 − 𝑟𝑛
1 − 𝑟 =

1
1 − 𝑟 − 1

1 − 𝑟 · lim
𝑛→∞

𝑟𝑛 .

By the ratio test (Lemma 3.25), we immediately conclude that |𝑟 | < 1 implies convergence and |𝑟 | > 1 implies divergence.
If 𝑟 = −1, then

𝑆𝑛 =

{
1, 𝑛 even,
0, 𝑛 odd.

Clearly, the subsequence (𝑆2𝑛) converges to 1 and (𝑆2𝑛+1) converges to 0. Therefore, by Proposition 3.15, (𝑆𝑛) diverges. The
proof is completed. □

Now, let’s state our typical series convergence tests!

Proposition 3.32. Suppose
∑∞

𝑛=1 𝑥𝑛 is a convergent infinite series. Then, lim𝑛→∞ 𝑥𝑛 = 0.

The contrapositive of the above is the commonly known divergence test.

Corollary 3.33 (Divergence Test). Suppose
∑∞

𝑛=1 𝑥𝑛 is given. If (𝑥𝑛) either diverges or converges to some non-zero real
number, then

∑
𝑥𝑛 diverges.

Proof. Let 𝑆𝑛 =
∑𝑛

𝑖=1 𝑥𝑖 . We are given that (𝑆𝑛) converges. Observe that 𝑥𝑛 = 𝑆𝑛 − 𝑆𝑛−1 for any 𝑛 > 1. Thus,

lim
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

𝑆𝑛 − lim
𝑛→∞

𝑆𝑛−1 = 0,

since Proposition 3.12 implies that (𝑆𝑛) and (𝑆𝑛−1) converge to the same values. □

Proposition 3.34 (Linearity of Series). Suppose
∑∞

𝑛=1 𝑥𝑛 and
∑∞

𝑛=1 𝑦𝑛 are convergent series and 𝑎, 𝑏 ∈ R. Then, the series∑∞
𝑛=1 (𝑎 · 𝑥𝑛 + 𝑏 · 𝑦𝑛) is convergent and converges to

∞∑︁
𝑛=1

(𝑎 · 𝑥𝑛 + 𝑏 · 𝑦𝑛) = 𝑎 ·
∞∑︁
𝑛=1

𝑥𝑛 + 𝑏 ·
∞∑︁
𝑛=1

𝑦𝑛 .

13



This comes immediately from the linearity of sequence limits applied to the partial sums 𝑆𝑛’s.

Definition 3.35. Suppose
∑∞

𝑛=1 𝑥𝑛 is a series. Then,
∑
𝑥𝑛 is said to be absolutely convergent (or to converge absolutely) iff∑ |𝑥𝑛 | converges.

Proposition 3.36 (Absolute Convergence). Suppose
∑
𝑥𝑛 is absolutely convergent. Then,

∑
𝑥𝑛 is convergent.

Proof. Let 𝑆𝑛 B
∑𝑛

𝑖=1 𝑥𝑛 and 𝑆 ′𝑛 B
∑𝑛

𝑖=1 |𝑥𝑛 |. Then, by definition, (𝑆 ′𝑛) converges as 𝑛 → ∞. Thus, for any 𝜖 > 0, there exists
some 𝑁 ∈ N such that

��𝑆 ′𝑚 − 𝑆 ′𝑛
�� < 𝜖. Equivalently,

∀𝜖 > 0, ∃𝑁 ∈ N,∀𝑚,𝑛 > 𝑁,𝑛 ≤ 𝑚 ⇒ (|𝑥𝑛 | + · · · + |𝑥𝑚 |) < 𝜖.

Choose an arbitrary 𝜖 > 0 and fix 𝑁 ∈ N. Then, for any𝑚,𝑛 > 𝑁 with 𝑛 ≤ 𝑚, we have

|𝑥𝑛 + · · · + 𝑥𝑚 | ≤ |𝑥𝑛 | + · · · + |𝑥𝑚 | < 𝜖.

Therefore, for any 𝜖 > 0, there exists some 𝑁 ∈ N such that for any𝑚,𝑛 > 𝑁 , |𝑆𝑚 − 𝑆𝑛 | < 𝜖 . Thus,
∑
𝑥𝑛 converges, and the

proof is completed. □

3.4.1 Convergence Tests for Series

Proposition 3.37 (Comparison Test). Suppose
∑∞

𝑛=1 𝑥𝑛 and
∑∞

𝑛=1 𝑦𝑛 are series such that 0 ≤ 𝑥𝑛 ≤ 𝑦𝑛 for all 𝑛 ∈ N. Then,

• If
∑
𝑦𝑛 converges, then

∑
𝑥𝑛 converges;

• If
∑
𝑥𝑛 is unbounded, then

∑
𝑦𝑛 is unbounded.

Proof. Let 𝑆𝑛 B 𝑥1 + · · · + 𝑥𝑛 and 𝑆 ′𝑛 B 𝑦1 + · · · + 𝑦𝑛 . Then, for any 𝑛 ∈ N, we have 0 ≤ 𝑆𝑛 ≤ 𝑆 ′𝑛 . Further, observe that no
terms of either series are negative, so both (𝑆𝑛) and (𝑆 ′𝑛) are monotone increasing.

Suppose
∑
𝑦𝑛 converges, or equivalently, (𝑆 ′𝑛) converges. Then, by Proposition 3.9, (𝑆 ′𝑛) is bounded. Therefore, (𝑆𝑛) is

bounded, and thus
∑
𝑥𝑛 converges.

Now suppose instead that
∑
𝑥𝑛 is unbounded. Since 𝑆 ′𝑛 ≥ 𝑆𝑛 , (𝑆 ′𝑛) is unbounded. Since it is monotone, we similarly conclude

that
∑
𝑦𝑛 diverges. □

Proposition 3.38 (Limit Comparison Test). Suppose (𝑎𝑛) and (𝑏𝑛) are positive-valued sequence. If the limit

lim
𝑛→∞

����𝑥𝑛+1
𝑥𝑛

����
exists and is positive, then

∑
𝑥𝑛 and

∑
𝑦𝑛either both converge or both diverge.

“Proof left as exercise” lol.

Proposition 3.39 (𝑝-Series). The 𝑝-series
∑∞

𝑛=1 𝑛
−𝑝 converges if and only if 𝑝 > 1.

Proof. Define 𝑆𝑛 B 1 + 2−𝑝 + · · · + 𝑛−𝑝 for 𝑛 ∈ N, which is monotone increasing.

Suppose 𝑝 > 1. We first look at the subsequence (𝑆2𝑛+1). Observe that

𝑆2𝑛+1 = 1 +
𝑛∑︁
𝑖=1

(
1

(2𝑖)𝑝 + 1
(2𝑖 + 1)𝑝

)
< 1 +

𝑛∑︁
𝑖=1

2
(2𝑖)𝑝

= 1 + 21−𝑝 ·
𝑛∑︁
𝑖=1

𝑖−𝑝
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= 1 + 21−𝑝 · 𝑆𝑛
< 1 + 𝑆𝑛 .

On the other hand, 𝑆𝑛 < 𝑆2𝑛+1 strictly. So, 𝑆2𝑛+1 < 1 + 21−𝑝 · 𝑆𝑛 < 1 + 21−𝑝 · 𝑆2𝑛+1. So, 𝑆𝑛 < 𝑆2𝑛+1 <
1

1 − 21−𝑝 . Thus, (𝑆𝑛) is
bounded from above. Since it is also increasing, by Theorem 3.9, (𝑆𝑛) converges. Thus,

∑
𝑛−𝑝 converges if 𝑝 > 1.

Divergence for 𝑝 ≤ 1 is “left as exercise.” □

Proposition 3.40 (Root Test for Series). Suppose
∑∞

𝑛=1 𝑥𝑛 is given and 𝐿 B lim sup𝑛→∞ |𝑥𝑛 |1/𝑛 exists. Then, the series
converges absolutely if 𝐿 < 1 and diverges if 𝐿 > 1.

Proof. Suppose
∑
𝑥𝑛 is given and 𝐿 B lim sup |𝑥𝑛 |1/𝑛 exists.

Suppose 𝐿 < 1. Choose any 𝑟 ∈ (𝐿, 1) and fix 𝑁 ∈ N such that ∀𝑛 ≥ 𝑁, |𝑥𝑛 |1/𝑛 < 𝑟 , so |𝑥𝑛 | < 𝑟𝑛 . Thus,

∞∑︁
𝑛=1

|𝑥𝑛 | =
𝑁−1∑︁
𝑛=1

|𝑥𝑛 | +
∞∑︁

𝑛=𝑁

|𝑥𝑛 |

<

𝑁−1∑︁
𝑛=1

|𝑥𝑛 | +
∞∑︁

𝑛=𝑁

𝑟𝑛

=

𝑁−1∑︁
𝑛=1

|𝑥𝑛 | +
𝑟𝑁

1 − 𝑟 ∈ R.

Thus,
∑
𝑥𝑛 converges absolutely.

Now suppose that 𝐿 > 1. We similarly choose 𝑟 ∈ (𝐿, 1) and fix 𝑁 ∈ N such that ∀𝑛 ≥ 𝑁, |𝑥𝑛 | > 𝑟𝑛 . Since 𝑟 > 1, by
Lemma 3.25, we conclude that |𝑥𝑛 | is diverges. Thus, it is impossible for (𝑥𝑛) to converge to 0,4 and by Proposition 3.33,∑
𝑥𝑛 diverges. The proof is finished. □

Proposition 3.41 (Alternating Series Test). Suppose (𝑥𝑛)∞𝑛=1 is a positive and decreasing sequence that tends to 0. Then,∑∞
𝑛=1 (−1)𝑛+1𝑥𝑛 converges.

Proof. Suppose (𝑥𝑛) is positive and decreasing and tends to 0. Let 𝑆𝑛 B
∑𝑛

𝑘=1 (−1)𝑘+1𝑥𝑘 . Clearly, (𝑆2𝑛−1) is a decreas-
ing subsequence bounded from below by 𝑆2 and (𝑆2𝑛) is an increasing sequence bounded from above by 𝑆1. Thus, both
subsequences converge. Let 𝑎 B lim 𝑆2𝑛 .

We now show that lim 𝑆𝑛 = 𝑎. Fix 𝑁1 ∈ N such that |𝑆2𝑛 − 𝑎 | < 𝜖/2 for any 𝑛 ≥ 𝑁1/2. Further, fix 𝑁2 ∈ N such that
𝑥2𝑛+1 < 𝜖/2 for any 𝑛 ≥ 𝑁2/2.

Let 𝑁 B max{𝑁1, 𝑁2}. Suppose 2𝑛 ≥ 𝑁 . Then, for even terms, |𝑆2𝑛 − 𝑎 | < 𝜖/2 < 𝜖 . For odd terms,

|𝑆2𝑛+1 − 𝑎 | = |𝑆2𝑛 + 𝑥2𝑛+1 − 𝑎 | ≤ |𝑆2𝑛 − 𝑎 | + |𝑥2𝑛+1 | < 𝜖/2 + 𝜖/2 = 𝜖.

Therefore, lim 𝑆𝑛 = 𝑎, and thus
∑(−1)𝑛+1𝑥𝑛 converges. The proof is complete. □

TODO: Series rearrangements, series multiplication (Mertens’ theorem), and power series.

4 Functions, Limits, and Continuity

In this section, we’ll finally go in to more general functions 𝑓 : 𝑆 → R (𝑆 ⊂ R).
4This requires us to prove that lim |𝑥𝑛 | = lim𝑥𝑛 , which we omit for brevity.
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4.1 Limits of Functions

To talk about limits of functions, it’s helpful to first introduce the concept of cluster points. I guess in this way, we can say
things like

lim
𝑥→0

𝑓 (𝑥) = 1, where 𝑓 : (0, +∞) → R, 𝑥 ↦→ 𝑥𝑥 .

Definition 4.1. Suppose 𝑆 ⊂ R and 𝑐 ∈ R are given. Then, 𝑐 is said to be a cluster point of 𝑆 iff any deleted neighborhood
of 𝑐 contains at least one point in 𝑆 ; that is, ∀𝜖 > 0, ∃𝑠 ∈ 𝑆\{𝑐}, 𝑠 ∈ (𝑐 − 𝜖, 𝑐 + 𝜖). If any 𝑥 ∈ R is a cluster point of 𝑆 , then we
say that 𝑆 is dense in R.

For example, for 𝑎 < 𝑏, the cluster points of (𝑎, 𝑏] are [𝑎, 𝑏]. The cluster points of Q are R (so Q is dense in R).

We’ll try and tie this stuff back to sequences too:

Proposition 4.2. Suppose 𝑆 ⊂ R and 𝑐 ∈ R are given. Then, 𝑐 is a cluster point of 𝑆 if and only if there exists a sequence
(𝑥𝑛)∞𝑛=1 in 𝑆\{𝑐} that converges to 𝑐 .

Proof. Let 𝑆 ⊂ R and 𝑐 ∈ R be given.

“If” Direction. Suppose (𝑥𝑛)∞𝑛=1 is a sequence in 𝑆\{𝑐} that converges to 𝑐 . Let 𝜖 > 0 be arbitrary. Then, fix 𝑁 ∈ N such
that 𝑐 − 𝜖 < 𝑥𝑛 < 𝑐 + 𝜖 for any 𝑛 ≥ 𝑁 . Let 𝑠 B 𝑥𝑁 ∈ 𝑆\{𝑐}, which satisfies the required condition.

“Only If” Direction. Suppose 𝑐 is a cluster point of 𝑆 . For any 𝑛 ∈ N, let 𝜖 B 1/𝑛 and fix some 𝑠 ∈ 𝑆\{𝑐} such that
𝑠 ∈ (𝑐 − 𝜖, 𝑐 + 𝜖). Set 𝑥𝑛 B 𝑠 . The definition for (𝑥𝑛) is complete.

Now suppose 𝜖 > 0 is arbitrary. By the Archimedean property of real numbers, choose some 𝑁 ∈ N such that 𝑁 · 𝜖 > 1. By
construction, |𝑥𝑛 − 𝑐 | < 1/𝑛. So, for any 𝑛 > 𝑁 , |𝑥𝑛 − 𝑐 | < 1/𝑛 < 1/𝑁 < 𝜖 . The proof is finished. □

Definition 4.3. Suppose 𝑆 ⊂ R is given and 𝑐 ∈ R is a cluster point of 𝑆 . Let 𝑓 : 𝑆 → R be a function. We say that 𝑓 (𝑥)
converges to 𝐿 as 𝑥 tends to 𝑐 , denoted as lim𝑥→𝑐 𝑓 (𝑥) = 𝐿, iff

∀𝜖 > 0, ∃𝛿 > 0,∀𝑥 ∈ 𝑆\{𝑐}, |𝑥 − 𝑐 | < 𝛿 ⇒ |𝑓 (𝑥) − 𝐿 | < 𝜖.

We’ll omit the proof that the limit is unique, which is easy to show. This justifies our use of the limit as a number, when it
exists.

Again, we’ll tie back the function limit to sequence limits! Note that how if 𝑐 is a cluster point of 𝑆 , then there’s at least one
sequence (𝑥𝑛) in 𝑆\{𝑐} that converges to 𝑐 , from the Proposition above.

Lemma 4.4 (Sequential Limits of Functions). Suppose 𝑆 ⊂ R is given and 𝑐 ∈ R is a cluster point of 𝑆 . Suppose further that
𝑓 : 𝑆 → R and 𝐿 ∈ R are given. Then, lim𝑥→𝑐 𝑓 (𝑥) = 𝐿 if and only if every sequence (𝑥𝑛)∞𝑛=1 in 𝑆\{𝑐} that converges to 𝑐
has 𝑓 (𝑥𝑛) → 𝐿.

Proof. Let 𝑆 ⊂ R be given and 𝑐 ∈ R a cluster point of 𝑆 . Suppose 𝑓 : 𝑆 → R and 𝐿 ∈ R are given.

“If” Direction. We use proof by contrapositive. Suppose on the contrary that 𝑓 (𝑥) does not converges to 𝐿 as 𝑥 → 𝑐 . Fix
𝜖 > 0 such that for any 𝛿 > 0, there exists some 𝑥 ∈ (𝑆\{𝑐}) ∩ (𝑐 − 𝛿, 𝑐 + 𝛿) with |𝑓 (𝑥) − 𝐿 | ≥ 𝜖 . We construct (𝑥𝑛)∞𝑛=1 as
follows. Let 𝛿 = 1/𝑛 > 0 and fix 𝑥 as above. Let 𝑥𝑛 B 𝑥 , which is bounded in (𝑐 − 𝛿, 𝑐 + 𝛿). Thus, |𝑥𝑛 − 𝑐 | < 𝛿 = 1/𝑛. Since
1/𝑛 → 0, we conclude that 𝑥𝑛 → 𝑐 . However, by construction, 𝑓 (𝑥𝑛) ̸→ 𝐿.

“Only If” Direction. Suppose 𝑓 (𝑥) → 𝐿 as 𝑥 → 𝑐 . Let (𝑥𝑛)∞𝑛=1 be a sequence in 𝑆\{𝑐} that converges to 𝑐 . Let 𝜖 > 0 be
given and fix 𝛿 > 0 such that for any 𝑥 ∈ 𝑆\{𝑐}, |𝑥 − 𝑐 | < 𝛿 ⇒ |𝑓 (𝑥) − 𝐿 | < 𝜖 . Since (𝑥𝑛) converges to 𝑐 , fix 𝑁 ∈ N such
that |𝑥𝑛 − 𝑐 | < 𝛿 for any 𝑛 > 𝑁 . Thus, ∀𝑛 > 𝑁, |𝑓 (𝑥𝑛) − 𝐿 | < 𝜖 . The proof is finished. □

This is actually huge, since basically any property of the limit of functions can be derived with this!
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Proposition 4.5 (Preservation of Non-Strict Inequality). Suppose 𝑆 ⊂ R is given and 𝑐 ∈ R is a cluster point of 𝑆 . Let
𝑓 , 𝑔 : 𝑆 → R be given. If the limits 𝐿1 B lim𝑥→𝑐 𝑓 (𝑥) and 𝐿2 B lim𝑥→𝑐 𝑔(𝑥) exist and 𝑓 (𝑥) ≤ 𝑔(𝑥) for any 𝑥 ∈ 𝑆 , then
𝐿1 ≤ 𝐿2.

Proof. Let (𝑥𝑛)∞𝑛=1 be an arbitrary sequence in 𝑆\{𝑐} that converges to 𝑐 . Then, 𝑓 (𝑥𝑛) → 𝐿1, 𝑔(𝑥𝑛) → 𝐿2, and ℎ(𝑥𝑛) → 𝐿3
from Lemma 4.4. On the other hand, we have 𝑓 (𝑥𝑛) ≤ 𝑔(𝑥𝑛) ≤ ℎ(𝑥𝑛) for any 𝑛 ∈ N. By Proposition 3.20, we have
𝐿1 ≤ 𝐿2 ≤ 𝐿3. The proof is finished. □

Theorem 4.6 (Squeeze Theorem for Functions). Suppose 𝑆 ⊂ R is given and 𝑐 is a cluster point of 𝑆 . Let 𝑓 , 𝑔, ℎ : 𝑆 ↦→ R be
given such that

• 𝑓 (𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) for any 𝑥 ∈ 𝑆 ;

• The limits lim𝑥→𝑐 𝑓 (𝑥) and lim𝑥→𝑐 ℎ(𝑥) exist and are equal.

Then, lim𝑥→𝑐 𝑔(𝑥) exists and converges to the same value as lim𝑥→𝑐 𝑓 (𝑥) and lim𝑥→𝑐 ℎ(𝑥).

Proof. Let (𝑥𝑛)∞𝑛=1 be an arbitrary sequence in 𝑆\{𝑐} that converges to 𝑐 . Note that 𝑓 (𝑥𝑛) → 𝐿 B lim𝑥→𝑐 𝑓 (𝑥) and ℎ(𝑥𝑛) →
𝐿 = lim𝑥→𝑐 ℎ(𝑥). The conditions for the squeeze lemma for sequences (Lemma 3.19) are satisfied; thus, lim𝑛→∞ 𝑔(𝑥𝑛) = 𝐿,
and by the arbitrary choice of (𝑥𝑛) we conclude that lim𝑥→𝑐 𝑔(𝑥) = 𝐿. The proof is complete. □

Proposition 4.7. Suppose 𝑆 ⊂ R is given and 𝑐 ∈ R is a cluster point of R. If 𝑓 , 𝑔 : 𝑆 → R are given such that lim𝑥→𝑐 𝑓 (𝑥)
and lim𝑥→𝑐 𝑔(𝑥) both exists, then

• lim𝑥→𝑐 [𝑓 (𝑥) + 𝑔(𝑥)] = [lim𝑥→𝑐 𝑓 (𝑥)] + [lim𝑥→𝑐 𝑔(𝑥)];

• lim𝑥→𝑐 [𝑓 (𝑥) − 𝑔(𝑥)] = [lim𝑥→𝑐 𝑓 (𝑥)] − [lim𝑥→𝑐 𝑔(𝑥)];

• lim𝑥→𝑐 [𝑓 (𝑥) · 𝑔(𝑥)] = [lim𝑥→𝑐 𝑓 (𝑥)] · [lim𝑥→𝑐 𝑔(𝑥)];

• lim𝑥→𝑐 [𝑓 (𝑥)/𝑔(𝑥)] = [lim𝑥→𝑐 𝑓 (𝑥)]/[lim𝑥→𝑐 𝑔(𝑥)], provided that lim𝑥→𝑐 𝑔(𝑥) ≠ 0 and 𝑔(𝑥) ≠ 0 for any 𝑥 ∈ 𝑆\{𝑐}.

Proof omitted cuz it follows immediately from the same conclusion for sequences.

4.2 Continuous Functions

Now we have some machinery to talk about continuous functions. While we all know this concept that basically 𝑓 is
continuous at 𝑐 if and only if lim𝑥→𝑐 𝑓 (𝑥) = 𝑓 (𝑐), it’s actually a little more intricate than that. From before, 𝑐 doesn’t have
to be in the domain, where the concept of continuity of a function (as a predicate) is well-defined over its domain. But
besides that, not really that much.

Definition 4.8. Suppose 𝑆 ⊂ R, 𝑐 ∈ 𝑆 , and 𝑓 : 𝑆 → R are given. Then, 𝑓 is said to be continuous at 𝑐 if for any 𝜖 > 0, there
exists some 𝛿 > 0 such that ∀𝑥 ∈ 𝑆, |𝑥 − 𝑐 | < 𝛿 ⇒ |𝑓 (𝑥) − 𝑓 (𝑐) | < 𝜖 .

Well, let’s state that relationship between limits and continuity precisely now.

Proposition 4.9. Suppose 𝑆 ⊂ R, 𝑐 ∈ 𝑆 , and 𝑓 : 𝑆 → R are given. Then,

• 𝑓 is continuous at 𝑐 , provided that 𝑐 is an isolated point of 𝑆 ;

• 𝑓 is continuous at 𝑐 if and only if lim𝑥→𝑐 𝑓 (𝑥) exists and lim𝑥→𝑐 𝑓 (𝑥) = 𝑓 (𝑐), provided that 𝑐 is a cluster point of 𝑆 ;

• 𝑓 is continuous at 𝑐 if and only if lim𝑛→∞ 𝑓 (𝑥𝑛) = 𝑓 (𝑐) for any sequence (𝑥𝑛)∞𝑛=1 in 𝑆 that converges to 𝑐 .

None of this is particularly interesting or challenging.
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Proof. Suppose 𝑐 ∈ R is an isolated point of 𝑆 ⊂ R. Then, fix some 𝜖0 ∈ R such ∀𝑥 ∈ 𝑆\{𝑐}, |𝑥 − 𝑐 | ≥ 𝜖0. Now suppose 𝜖 > 0
is arbitrary. Let 𝛿 B 𝜖0, so the only possibility that |𝑥 − 𝑐 | < 𝛿 is when 𝑥 = 𝑐 . Thus, |𝑓 (𝑥) − 𝑓 (𝑐) | = |𝑓 (𝑐) − 𝑓 (𝑐) | = 0 < 𝜖 is
true regardless of any further restrictions on 𝑓 .

Suppose now that 𝑐 ∈ R is a cluster point of 𝑆 . There are two directions.
“If”Direction. Suppose lim𝑥→𝑐 𝑓 (𝑥) = 𝑓 (𝑐). For any 𝜖 > 0, fix𝛿 > 0 such that∀𝑥 ∈ 𝑆\{𝑐}, |𝑥 − 𝑐 | < 𝛿 ⇒ |𝑓 (𝑥) − 𝑓 (𝑐) | < 𝜖 .
If 𝑥 = 𝑐 , then |𝑓 (𝑥) − 𝑓 (𝑐) | = |𝑓 (𝑐) − 𝑓 (𝑐) | = 0 < 𝜖 , and we are done.
“Only If” Direction. Suppose now that 𝑓 is continuous at 𝑐 . For any 𝜖 > 0, fix 𝛿 > 0 such that ∀𝑥 ∈ 𝑆, |𝑥 − 𝑐 | < 𝛿 ⇒
|𝑓 (𝑥) − 𝑓 (𝑐) | < 𝜖 . We can clearly restrict the possible values of 𝑥 from 𝑆 to 𝑆\{𝑐}.

Now suppose 𝑓 is continuous at 𝑐 . Let (𝑥𝑛) be an arbitrary sequence in 𝑆 that converges to 𝑐 . Suppose 𝜖 > 0 is given, and
fix 𝛿 > 0 such that for any 𝑥 ∈ 𝑆 , |𝑥 − 𝑐 | < 𝛿 ⇒ |𝑓 (𝑥) − 𝑓 (𝑐) | < 𝜖 . Now by virtue that 𝑥𝑛 → 𝑐 , fix 𝑁 ∈ N such that
∀𝑛 > 𝑁, |𝑥𝑛 − 𝑐 | < 𝛿 . Then, |𝑓 (𝑥𝑛) − 𝑓 (𝑐) | < 𝜖 . Therefore, 𝑓 (𝑥𝑛) → 𝑓 (𝑐).

We will prove the last “only if” statement by contrapositive. Suppose 𝑓 is not continuous at 𝑐 . Fix 𝜖 > 0 such that for any
𝛿 > 0, there exists some 𝑥𝛿 ∈ 𝑆 with |𝑥𝛿 − 𝑐 | < 𝛿 but |𝑓 (𝑥𝛿 ) − 𝑓 (𝑐) | ≥ 𝜖 . We construct the sequence (𝑥𝑛) as follows: 𝑥𝑛 B 𝑥𝛿

with 𝛿 = 1/𝑛 for 𝑛 ∈ N. Since 1/𝑛 → 0, we have 𝑥𝑛 → 𝑐 by Proposition 3.24. However, 𝑓 (𝑥𝑛) ̸→ 𝑓 (𝑐) since 𝑓 (𝑥𝑛) is at least
distance 𝜖 from 𝑓 (𝑐) always. The proof is now complete. □

Now let us now state the continuity of algebraic operations.

Proposition 4.10. Suppose 𝑆 ⊂ R is given. Let 𝑓 , 𝑔 : 𝑆 → R be continuous functions. Then,

• 𝑓 + 𝑔 is continuous;

• 𝑓 − 𝑔 is continuous;

• 𝑓 · 𝑔 is continuous;

• 𝑓 /𝑔 is continuous, provided that ∀𝑥 ∈ 𝑆, 𝑔(𝑥) ≠ 0.

I’ll skip the proof since this follows straight from Proposition 4.7.

Now, the limit of a composition. This is a perfect demonstration of the elegance of the sequential characterization of the
limit of a function.

Proposition 4.11. Let 𝐴, 𝐵 ⊂ R, 𝑓 : 𝐵 → R, 𝑔 : 𝐴 → 𝐵, and 𝑐 ∈ 𝐴 be given. If 𝑔 is continuous at 𝑐 and 𝑓 is continuous at
𝑔(𝑐), then 𝑓 ◦ 𝑔 is continuous at 𝑐 .

Proof. Let (𝑥𝑛)∞𝑛=1 be an arbitrary sequence in 𝐴 that converges to 𝑐 . Then, 𝑔(𝑥𝑛) → 𝑔(𝑐), and 𝑓 (𝑔(𝑥𝑛)) → 𝑓 (𝑔(𝑐)). The
proof is finished. □

Niceeeee. Finally,

Proposition 4.12. Every polynomial is continuous over R; that is, 𝑓 : R→ R as defined by

𝑓 (𝑥) =
𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

is continuous, where 𝑎0, · · · , 𝑎𝑛 are constants and 𝑛 ∈ Z≥0 is given.

Proof. Suppose 𝑐 ∈ 𝑆 is given. If 𝑐 is a cluster point of 𝑆 ,

lim
𝑥→𝑐

𝑓 (𝑥) = lim
𝑥→𝑐

(
𝑎𝑑𝑥

𝑑 + 𝑎𝑑−1𝑥
𝑑−1 + · · · + 𝑎1𝑥 + 𝑎0

)
= 𝑎𝑑 lim

𝑥→𝑐
𝑥𝑑 + 𝑎𝑑−1 lim

𝑥→𝑐
𝑥𝑑−1 + · · · + 𝑎0
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= 𝑎𝑑𝑐
𝑑 + 𝑎𝑑−1𝑐

𝑑−1 + · · · + 𝑎0 (By Continuity of 𝜆𝑥.𝑥 and Prop. 4.10)
= 𝑓 (𝑐) .

Otherwise, 𝑓 is trivially continuous at 𝑐 . □

4.3 Min–Max andThe Intermediate Value Theorem

It is only apt that the IVT has its own section! Before we prove that, we need some useful propositions about continuous
functions.

Proposition 4.13. Suppose 𝑓 : [𝑎, 𝑏] → R is continuous. Then, 𝑓 is bounded.

Proof. Suppose on the contrary that 𝑓 is not bounded. For any 𝑛 ∈ N, fix 𝑥𝑛 ∈ [𝑎, 𝑏] such that |𝑓 (𝑥𝑛) | > 𝑛, so (𝑓 (𝑥𝑛)) is
unbounded and thus divergent by Proposition 3.7. However, (𝑥𝑛) is bounded, so we may choose a convergent subsequence
(𝑥𝑛𝑘 ) by Theorem 3.17; on the other hand, 𝑓 (𝑥𝑛𝑘 ) diverges as a subsequence, a contradiction to Proposition 4.9. □

We can now talk about the concept of maxima and minima.

Definition 4.14. Let 𝑆 ⊂ R and 𝑥0 ∈ 𝑆 be given and suppose 𝑓 : 𝑆 → R is continuous. 𝑓 is said to attain an absolute
maximum at 𝑥0 iff ∀𝑥 ∈ 𝑆, 𝑓 (𝑥) ≤ 𝑓 (𝑥0). Similarly, 𝑓 is said to attain an absolute minimum at 𝑥0 iff ∀𝑥 ∈ 𝑆, 𝑓 (𝑥) ≥ 𝑓 (𝑥0).

Complementarily, 𝑓 is said to attain a relative maximum (resp. minimum) at 𝑥0 iff 𝑓 attains an absolute maximum (resp.
minimum) at 𝑥0 when its restricted is restricted to some open interval containing 𝑥0. That is, 𝑓 is said to attain an absolute
maximum at 𝑥0 iff ∃𝛿 > 0,∀𝑥 ∈ 𝑆 ∩ (𝑥0 − 𝛿, 𝑥0 + 𝛿), 𝑓 (𝑥) ≤ 𝑓 (𝑥0). Similarly, 𝑓 is said to attain an absolute minimum at 𝑥0
iff ∃𝛿 > 0,∀𝑥 ∈ 𝑆 ∩ (𝑥0 − 𝛿, 𝑥0 + 𝛿), 𝑓 (𝑥) ≥ 𝑓 (𝑥0).

By the way, the 𝑥0 isn’t always unique. It might not exist too!

Theorem 4.15 (Min-Max). Suppose 𝑓 : [𝑎, 𝑏] → R is continuous. Then, 𝑓 has both an absolute maximum and an absolute
minimum.

Proof. By Proposition 4.13, 𝑀↑ B sup 𝑓 ( [𝑎, 𝑏]) ∈ R. Then, for any 𝑛 ∈ N, fix 𝑥𝑛 ∈ [𝑎, 𝑏] such that 𝑀↑ − 𝑓 (𝑥𝑛) < 𝜖 B 1/𝑛
by Proposition 2.6. We then obtain (𝑥𝑛) with 𝑓 (𝑥𝑛) → 𝑀↑ by definition. Since (𝑥𝑛) is bounded (in [𝑎, 𝑏]), we extract a
convergent subsequence (𝑥𝑛𝑘 ), and 𝑓 (𝑥𝑛𝑘 ) still converges to 𝑀↑ by Proposition 3.15.

Now observe that 𝑎 ≤ 𝑥𝑛𝑘 ≤ 𝑏, so the limit 𝑥∗ B lim𝑘→∞ 𝑥𝑛𝑘 is still confined within the interval: 𝑎 ≤ lim𝑥𝑛𝑘 ≤ 𝑏, so
𝑥∗ ∈ [𝑎, 𝑏]. Therefore, by definition, 𝑓 attains an absolute maximum at 𝑥∗. A similar argument ensues for the minimum. □

We can now state Bolzano’s intermediate value theorem! Weirdly enough, we’ll do this with the bisection method and show
that it converges. We’re manually constructing that zero, basically. I guess whatever works works.

Theorem 4.16 (Bolzano). Suppose 𝑓 : [𝑎, 𝑏] → R is continuous, and 𝑓 (𝑎) ≠ 𝑓 (𝑏). Then, for any 𝑦 strictly between 𝑓 (𝑎) and
𝑓 (𝑏), there exists some 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 (𝑐) = 𝑦.

Proof. Without loss of generality, suppose 𝑓 (𝑎) < 0 and 𝑓 (𝑏) > 0, and suppose 𝑦 = 0.

We begin by constructing two sequences simultaneously: (𝑎𝑛)∞𝑛=0 and (𝑏𝑛)∞𝑛=0. Begin with 𝑎0 = 𝑎 and 𝑏0 = 𝑏. Then,
inductively, suppose 𝑎𝑛 and 𝑏𝑛 have been defined (𝑛 ∈ Z≥0). Then,

• Let 𝑡 = (𝑎𝑛 + 𝑏𝑛)/2;

• If 𝑓 (𝑡) ≥ 0, then let 𝑎𝑛+1 B 𝑎𝑛 and 𝑏𝑛+1 B 𝑡 ;

• Otherwise, let 𝑎𝑛+1 B 𝑡 and 𝑏𝑛+1 B 𝑏𝑛 .
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Define 𝑥𝑛 = (𝑎𝑛 + 𝑏𝑛)/2 for 𝑛 ∈ Z≥0. Clearly, 𝑎𝑛 < 𝑥𝑛 < 𝑏𝑛 always, and 𝑏𝑛 − 𝑎𝑛 = (𝑏 − 𝑎) · 2−𝑛 . Further, (𝑎𝑛) is monotone
increasing and (𝑏𝑛) is monotone decreasing by construction.

Note that (𝑎𝑛) is bounded from above by 𝑏 and (𝑏𝑛) is bounded from below by 𝑎, so both sequences are guaranteed to
converge by the monotone convergence theorem (Theorem 3.9). By the squeeze theorem (Theorem 3.19), then, 𝑥𝑛 converges,
and by Proposition 3.20 we assert that 𝑥∗ B lim𝑛→∞ 𝑥𝑛 is confined in [𝑎, 𝑏].

Now, 𝑓 (𝑎𝑛) ≤ 0 and 𝑓 (𝑏𝑛) for any 𝑛 ∈ Z≥0, so lim 𝑓 (𝑎𝑛) ≤ 0 ≤ lim 𝑓 (𝑏𝑛). But the limits on the two ends must be 𝑓 (lim𝑎𝑛)
and 𝑓 (lim𝑏𝑛) by Lemma 4.4, and so 𝑓 (𝑥∗) = lim 𝑓 (𝑥𝑛) = lim 𝑓 (𝑎𝑛) = lim 𝑓 (𝑏𝑛) = 0. So 𝑥∗ is a zero of 𝑓 . □

We now give a short introduction to uniform continuity of a function.

Definition 4.17. Suppose 𝑆 ⊂ R and 𝑓 : 𝑆 → R are given. 𝑓 is said to be uniformly continuous iff for all 𝜖 > 0, there exists
some 𝛿 > 0 such that for all 𝑥,𝑦 ∈ 𝑆 such that |𝑥 − 𝑦 | < 𝛿 , |𝑓 (𝑥) − 𝑓 (𝑦) | < 𝜖 .

So basically it needs a 𝛿 that doesn’t depend on the 𝑐 .

Theorem 4.18 (Heine–Cantor). Let 𝑓 : [𝑎, 𝑏] → R be continuous. Then, 𝑓 is uniformly continuous.

Proof. We prove this theorem by the contrapositive. Let 𝑓 : [𝑎, 𝑏] → R be given and suppose on the contrary that 𝑓 is not
uniformly continuous. Fix 𝜖 > 0 such that for all 𝛿 > 0, there exist 𝑥,𝑦 ∈ [𝑎, 𝑏] such that |𝑥 − 𝑦 | < 𝛿 but |𝑓 (𝑥) − 𝑓 (𝑦) | ≥ 𝜖 .5

Fix two sequences (𝑥𝑛)∞𝑛=1 and (𝑦𝑛)∞𝑛=1 thereby such that |𝑥𝑛 − 𝑦𝑛 | < 1/𝑛 but |𝑓 (𝑥𝑛) − 𝑓 (𝑦𝑛) | ≥ 𝜖 . By the Bolzano-
Weierstrass theorem (Proposition 3.17), we may extract a convergent subsequence (𝑥𝑛𝑘 )∞𝑘=1 of (𝑥𝑛). Let 𝑐 B lim𝑥𝑛𝑘 ∈ [𝑎, 𝑏]
by Proposition 3.20. Then, for an arbitrary 𝑘 ∈ N,��𝑦𝑛𝑘 − 𝑐 �� = ��𝑦𝑛𝑘 − 𝑥𝑛𝑘 + 𝑥𝑛𝑘 − 𝑐 �� ≤ ��𝑥𝑛𝑘 − 𝑦𝑛𝑘 �� + ��𝑥𝑛𝑘 − 𝑐 �� ≤ 1

𝑛𝑘
+

��𝑥𝑛𝑘 − 𝑐 �� → 0.

Thus, lim𝑦𝑛𝑘 = 𝑐 as well by Proposition 3.24.

However,
��𝑓 (𝑥𝑛𝑘 ) − 𝑓 (𝑦𝑛𝑘 )�� ≥ 𝜖 by construction and therefore cannot converge to a common value.6 Thus, by Proposi-

tion 4.9, 𝑓 is not continuous. The proof is complete. □

5 The Derivative

Let’s start right off the bat with the definition.

Definition 5.1. Suppose 𝐼 ⊂ R is an interval and let 𝑓 : 𝐼 → R and 𝑐 ∈ 𝐼 be given. The derivative of 𝑓 at 𝑐 , denoted as 𝑓 ′ (𝑐),
is defined as the following limit.

𝑓 ′ (𝑐) B lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 .

If the limit above exists, then 𝑓 is said to be differentiable at 𝑐 .7 If 𝑓 is differentiable at all points in 𝐼 , then 𝑓 is said to be
differentiable. 𝑓 is said to be differentiable on 𝑆 ⊂ 𝐼 if it is differentiable at all points in 𝑆 .

The first thing we learn about the derivative is:

Proposition 5.2. Suppose 𝐼 ⊂ R is an interval and let 𝑓 : 𝐼 → R and 𝑐 ∈ 𝐼 be given. If 𝑓 is differentiable at 𝑐 , then 𝑓 is
continuous at 𝑐 .

Proof. Note that lim𝑥→𝑐 (𝑥 − 𝑐) = 0 by Proposition 4.12. Therefore, by Proposition 3.22, the following limit exists and is

lim
𝑥→𝑐

(𝑓 (𝑥) − 𝑓 (𝑐)) =
(
lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐

)
·
(
lim
𝑥→𝑐

𝑥 − 𝑐
)
= 𝑓 ′ (𝑐) · 0 = 0.

5That is, “𝑓 (𝑥 ) and 𝑓 (𝑦) can be made sufficient far apart (by at least some fixed 𝜖 > 0) when the distance between 𝑥 and 𝑦 is made arbitrarily small.”
6To show this, suppose for the sake of contradiction that the common limit exists. Then, 𝑓 (𝑥𝑛𝑘 ) − 𝑓 (𝑦𝑛𝑘 ) → 0 by Proposition 3.22, which contradicts

the definition of the limit being 0.
7I understand that this differs for a multivariable real-valued function.
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Again, since lim𝑥→𝑐 𝑓 (𝑐) = 𝑓 (𝑐) by Proposition 4.12, the following limit exists and is

lim
𝑥→𝑐

𝑓 (𝑥) =
(
lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
)
+

(
lim
𝑥→𝑐

𝑓 (𝑐)
)
.

We take for granted the fact that 𝑐 ∈ 𝐼 is necessarily a cluster point of 𝐼 . Therefore, by Proposition 4.9, 𝑓 is continuous at
𝑐 . □

Now linearity.

Proposition 5.3. Suppose 𝐼 ⊂ R is an interval and let 𝑓 , 𝑔 : 𝐼 → R be differentiable at a given point 𝑐 ∈ 𝐼 . Then,

• 𝑓 + 𝑔 is differentiable at 𝑐 , and (𝑓 + 𝑔)′ (𝑐) = 𝑓 ′ (𝑐) + 𝑔′ (𝑐);

• For any 𝛼 ∈ R, 𝛼 · 𝑓 is differentiable at 𝑐 , and (𝛼 · 𝑓 )′ (𝑐) = 𝛼 · 𝑓 ′ (𝑐).

Proof. This is an immediate result from Proposition 4.10. The following limit exists and is

(𝑓 + 𝑔)′ (𝑐) = lim
𝑥→𝑐

(𝑓 (𝑥) + 𝑔(𝑥)) − (𝑓 (𝑐) + 𝑔(𝑐))
𝑥 − 𝑐 =

(
lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐

)
+

(
lim
𝑥→𝑐

𝑔(𝑥) − 𝑔(𝑐)
𝑥 − 𝑐

)
= 𝑓 ′ (𝑐) + 𝑔′ (𝑐).

Similarly,
(𝛼 · 𝑓 )′ (𝑐) = lim

𝑥→𝑐

𝛼 · 𝑓 (𝑥) − 𝛼 · 𝑓 (𝑐)
𝑥 − 𝑐 = 𝛼 · lim

𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 = 𝛼 · 𝑓 ′ (𝑐).

The proof is finished. □

We now give the product rule, the quotient rule, and the chain rule. We also include in Appendix ?? a rigorous definition of
exponential and trigonometric functions with results up to this point.

Proposition 5.4 (Chain Rule). Let 𝐼1, 𝐼2 ⊂ R be intervals and suppose 𝑓 : 𝐼2 → R, 𝑔 : 𝐼1 → 𝐼2, and 𝑐 ∈ 𝐼1 are given. If 𝑔 is
differentiable at 𝑐 and 𝑓 is differentiable at 𝑔(𝑐), then 𝑓 ◦ 𝑔 is differentiable at 𝑐 and

(𝑓 ◦ 𝑔)′ (𝑐) = 𝑓 ′ (𝑔(𝑐)) · 𝑔′ (𝑐).

Proof. Let 𝑑 B 𝑔(𝑐) ∈ 𝐼2 and define 𝑢 : 𝐼2 → R and 𝑣 : 𝐼1 → 𝐼2 as

𝑢 (𝑦) B


𝑓 (𝑦) − 𝑓 (𝑑)
𝑦 − 𝑑 , if 𝑦 ≠ 𝑑,

𝑓 ′ (𝑑), otherwise
and 𝑣 (𝑥) B


𝑔(𝑥) − 𝑔(𝑐)

𝑥 − 𝑐 , if 𝑥 ≠ 𝑐,

𝑔′ (𝑐), otherwise

We take for granted the fact that 𝑐 and 𝑑 are cluster points in 𝐼1 and 𝐼2 respectively. Since 𝑓 is differentiable at 𝑑 , we have

𝑓 ′ (𝑑) = lim
𝑦→𝑑

𝑓 (𝑦) − 𝑓 (𝑑)
𝑦 − 𝑑 ,

and hence 𝑢 is continuous at 𝑑 . By a similar argument, 𝑣 is continuous at 𝑐 .

Observe that 𝑓 (𝑦) − 𝑓 (𝑑) = 𝑢 (𝑦) · (𝑦 −𝑑) for all 𝑦 ∈ 𝐼2 and 𝑔(𝑥) −𝑔(𝑐) = 𝑣 (𝑥) · (𝑥 − 𝑐) for all 𝑥 ∈ 𝐼1. Thus, for all 𝑥 ∈ 𝐼1\{𝑐},

𝑓 (𝑔(𝑥)) − 𝑓 (𝑔(𝑐)) = 𝑢 (𝑔(𝑥)) · (𝑔(𝑥) − 𝑔(𝑐)) = 𝑢 (𝑔(𝑥)) · 𝑣 (𝑥) · (𝑥 − 𝑐).

Therefore, by continuity and Proposition 4.11, the following limit exists and is

(𝑓 ◦ 𝑔)′ (𝑐) = lim
𝑥→𝑐

(𝑓 ◦ 𝑔) (𝑥) − (𝑓 ◦ 𝑔) (𝑐)
𝑥 − 𝑐 = lim

𝑥→𝑐
𝑢 (𝑔(𝑥)) · 𝑣 (𝑥) = 𝑓 ′ (𝑔(𝑐)) · 𝑔′ (𝑐).

□
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Proposition 5.5 (Product Rule). Let 𝐼 ⊂ R be an interval and suppose 𝑓 , 𝑔 : 𝐼 → R are both differentiable at a given point
𝑐 ∈ 𝐼 . Then, 𝑓 · 𝑔 is differentiable at 𝑐 and

(𝑓 · 𝑔)′ (𝑐) = 𝑓 ′ (𝑐) · 𝑔(𝑐) + 𝑓 (𝑐) · 𝑔′ (𝑐).

Proof. Observe that

(𝑓 · 𝑔)′ (𝑐) = lim
𝑥→𝑐

𝑓 (𝑥) · 𝑔(𝑥) − 𝑓 (𝑐) · 𝑔(𝑐)
𝑥 − 𝑐

= lim
𝑥→𝑐

𝑓 (𝑥) · 𝑔(𝑥) − 𝑓 (𝑥) · 𝑔(𝑐) + 𝑓 (𝑥) · 𝑔(𝑐) − 𝑓 (𝑐) · 𝑔(𝑐)
𝑥 − 𝑐

=

(
lim
𝑥→𝑐

𝑓 (𝑥)
)
·
(
lim
𝑥→𝑐

𝑔(𝑥) − 𝑔(𝑐)
𝑥 − 𝑐

)
+

(
lim
𝑥→𝑐

𝑔(𝑐)
)
·
(
lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐

)
(Prop. 4.7)

= 𝑓 ′ (𝑐) · 𝑔(𝑐) + 𝑓 (𝑐) · 𝑔′ (𝑐).

The proof is finished. □

Corollary 5.6. Let 𝑓 : R→ R be a degree-𝑑 polynomial (𝑑 ∈ Z≥0); that is,

𝑓 (𝑥) = 𝑎0 +
𝑑∑︁

𝑛=1
𝑎𝑛𝑥

𝑛

for real constants 𝑎0, 𝑎1, · · · , 𝑎𝑛 ∈ R. Then, 𝑓 is differentiable and

𝑓 ′ (𝑥) =
𝑑∑︁

𝑛=1
𝑛𝑎𝑛𝑥

𝑛−1.

This corollary is obvious from induction.

Proposition 5.7 (Quotient Rule). Let 𝐼 ⊂ R be an interval and suppose 𝑓 , 𝑔 : 𝐼 → R are both differentiable at a given point
𝑐 ∈ 𝐼 , and 𝑔(𝑐) ≠ 0. Then, 𝑓 /𝑔 is differentiable at 𝑐 and

(𝑓 /𝑔)′ (𝑐) = 𝑓 ′ (𝑐) · 𝑔(𝑐) − 𝑓 (𝑐) · 𝑔′ (𝑐)
𝑔(𝑐)2 .

This proof is “left as exercise.”

Let’s now talk about two mean-value theorems.

Theorem 5.8 (Rolle’s Mean-Value Theorem). Suppose 𝑓 : [𝑎, 𝑏] → R is a continuous function, differentiable on (𝑎, 𝑏), such
that 𝑓 (𝑎) = 𝑓 (𝑏). Then, there exists some 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ′ (𝑐) = 0.

Proof. Let 𝑚 B inf 𝑓 ( [𝑎, 𝑏]) and 𝑀 B sup 𝑓 ( [𝑎, 𝑏]). If 𝑚 = 𝑀 , then 𝑓 ( [𝑎, 𝑏]) is a singleton, and hence 𝑓 is a constant
function. Let 𝑐 = 𝑎, then 𝑓 ′ (𝑐) = lim(𝑓 (𝑥) − 𝑓 (𝑐))/(𝑥 − 𝑐) = lim 0/(𝑥 − 𝑐) = 0. We now suppose𝑚 < 𝑀 .

Choose 𝑐 ∈ [𝑎, 𝑏] such that 𝑓 (𝑐) = 𝑀 by Theorem 4.15. We first suppose 𝑐 ∈ (𝑎, 𝑏). Then, for all 𝑥 ∈ [𝑎, 𝑐), 𝑓 (𝑥) − 𝑓 (𝑐) ≤ 0
and 𝑥 − 𝑐 < 0, so

𝑓 ′ (𝑐) = lim
𝑥→𝑐−

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 ≥ 0.

For all 𝑥 ∈ (𝑐, 𝑏], 𝑓 (𝑥) − 𝑓 (𝑐) ≤ 0 and 𝑥 − 𝑐 > 0, so

𝑓 ′ (𝑐) = lim
𝑥→𝑐+

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 ≤ 0.
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Thus, 𝑓 ′ (𝑐) = 0.

If instead 𝑐 ∈ {𝑎, 𝑏}, then 𝑓 (𝑎) = 𝑓 (𝑏) = 𝑓 (𝑐). Since 𝑚 < 𝑀 strictly, an absolute minimum must be achieved at some
𝑐′ ∈ (𝑎, 𝑏), for which the same argument applies with the maximum replaced by the minimum. □

Theorem 5.9 (Lagrange’s Mean-Value Theorem). Suppose 𝑓 : [𝑎, 𝑏] → R is a continuous function differentiable on (𝑎, 𝑏).
Then, there exists some 𝑐 ∈ (𝑎, 𝑏) such that

𝑓 ′ (𝑐) = 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 .

Proof. Let𝑚 B (𝑓 (𝑏) − 𝑓 (𝑎))/(𝑏 − 𝑎) and define 𝑓 ∗ : [𝑎, 𝑏] → R as 𝑓 ∗ (𝑥) B 𝑓 (𝑥) −𝑚(𝑥 − 𝑎) − 𝑓 (𝑎). Then, 𝑓 ∗ (𝑎) = 𝑓 ∗ (𝑏),
and thus there exists 𝑐 by Theorem 5.8 such that (𝑓 ∗)′ (𝑐) = 0. Then, by Propositions 5.3 and 5.6,

𝑓 ′ (𝑐) = (𝑓 ∗)′ (𝑐) +𝑚 =
𝑓 (𝑏) − 𝑓 (𝑎)

𝑏 − 𝑎 .

The proof is finished. □

Let’s now get into one of the most useful aspects of the derivative: its relationship with monotonocity and local ex-
trema.

Proposition 5.10. Suppose 𝐼 ⊂ R is given and 𝑓 : 𝐼 → R is differentiable. Then, 𝑓 is increasing if and only if 𝑓 ′ (𝑥) ≥ 0 for
all 𝑥 ∈ 𝐼 .

Proof. Recall that 𝑓 is said to be increasing if 𝑓 (𝑥) ≤ 𝑓 (𝑦) for all 𝑥,𝑦 ∈ 𝐼 with 𝑥 < 𝑦.

“If” Direction. Suppose on the contrary that 𝑓 is not increasing. Fix 𝑥,𝑦 ∈ 𝐼 such that 𝑥 < 𝑦 but 𝑓 (𝑥) > 𝑓 (𝑦). Then,
applying Lagrange’s mean-value theorem (Theorem 5.9) to 𝑓 | [𝑥,𝑦 ] , we have some 𝑐 ∈ (𝑥,𝑦) such that 𝑓 ′ (𝑐) = (𝑓 (𝑦) −
𝑓 (𝑥))/(𝑦 − 𝑥) < 0.

“Only If” Direction. Let 𝑓 be increasing, and suppose 𝑐 ∈ 𝐼 are given. Then, for all 𝑥 ∈ 𝐼\{𝑐},

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 ≥ 0.

Thus, by Proposition 3.20,
𝑓 ′ (𝑐) = lim

𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 ≥ 0.

The proof is complete. □

Lemma 5.11 (Fermat). Let 𝑓 : [𝑎, 𝑏] → R be a continuous function, differentiable on (𝑎, 𝑏). If 𝑓 attains a local maximum
or a local minimum at 𝑐 ∈ (𝑎, 𝑏), then 𝑓 ′ (𝑐) = 0.

Proof. We first consider the case of maximum. Fix 𝛿 > 0 such that 𝑓 (𝑥) ≤ 𝑓 (𝑐) for all 𝑥 ∈ [𝑎, 𝑏] ∩ (𝑐 − 𝛿, 𝑐 + 𝛿)\{𝑐}.

For any 𝑥 ∈ [𝑎, 𝑏] ∩ (𝑐 − 𝛿, 𝑐), 𝑓 (𝑥) − 𝑓 (𝑐) < 0 and 𝑥 − 𝑐 < 0. Hence,

𝑓 ′ (𝑐) = lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 = lim

𝑥→𝑐−

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 ≤ 0.

For any 𝑥 ∈ [𝑎, 𝑏] ∩ (𝑐, 𝑐 + 𝛿), 𝑓 (𝑥) − 𝑓 (𝑐) < 0 and 𝑥 − 𝑐 > 0. Hence,

𝑓 ′ (𝑐) = lim
𝑥→𝑐

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 = lim

𝑥→𝑐+

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 ≥ 0.

Thus, 𝑓 ′ (𝑐) = 0. The case of minimum follows the same logic. The proof is finished. □

The intermediate value property is surprisingly easy to prove.
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Proposition 5.12 (Intermediate Value Property for Derivatives). Let 𝑓 : [𝑎, 𝑏] → R be differentiable.8 Then, for any 𝑦 ∈
(min{𝑓 ′ (𝑎), 𝑓 ′ (𝑏)},max{𝑓 ′ (𝑎), 𝑓 ′ (𝑏)}), there exists some 𝑥 ∈ (𝑎, 𝑏) such that 𝑓 ′ (𝑥) = 𝑦.

Proof. Without loss of generality, suppose 𝑓 ′ (𝑎) < 𝑓 ′ (𝑏). Define𝑔 : [𝑎, 𝑏] → R as𝑔(𝑥) B 𝑓 (𝑥)−𝑦𝑥 . Then, 𝑔 is differentiable
with 𝑔′ (𝑥) = 𝑓 ′ (𝑥) − 𝑦. In particular, 𝑔 is continuous, and by Theorem 4.15, 𝑔 attains minimum value at some 𝑥0 ∈ [𝑎, 𝑏].

We now show that 𝑥0 ≠ 𝑎. Since 𝑔′ (𝑎) = 𝑓 ′ (𝑎) − 𝑦 < 0—that is,

lim
𝑥→𝑎

𝑔(𝑥) − 𝑔(𝑎)
𝑥 − 𝑎 < 0,

for 𝜖 B −𝑔′ (𝑎), fix 𝛿 > 0 such that for any 𝑥 ∈ (𝑎, 𝑎 +𝛿) ⊂ (𝑎, 𝑏],
����𝑔(𝑥) − 𝑔(𝑎)𝑥 − 𝑎 − 𝑔′ (𝑎)

���� < 𝜖 = −𝑔′ (𝑎). Hence, 𝑔(𝑥) − 𝑔(𝑎)
𝑥 − 𝑎 <

𝑔′ (𝑎) − 𝑔′ (𝑎) = 0. Since 𝑥 ∈ (𝑎, 𝑏], 𝑥 − 𝑎 > 0, so 𝑔(𝑥) < 𝑔(𝑎). Thus, 𝑔 cannot attain a minimum at 𝑎.

Similarly, 𝑥0 ≠ 𝑏: 𝑔′ (𝑏) > 0, so there exists some 𝛿 > 0 such that 𝑔(𝑥) − 𝑔(𝑏)
𝑥 − 𝑏 > 0 for all 𝑥 ∈ (𝑏 − 𝛿, 𝑏). Hence, 𝑔(𝑥) < 𝑔(𝑏),

so 𝑔 cannot attain a minimum at 𝑏.

Thus, 𝑥0 ∈ (𝑎, 𝑏), and Proposition 5.3 justifies 𝑓 ′ (𝑥0) = 𝑦. The proof is finished. □

6 The Riemann Integral

I knew I would hate integrals back in high school and I dang right do! The details are so horrendous… But, they’re gras-
pable.

Definition 6.1. A partition of a closed interval [𝑎, 𝑏] is a finite subset of [𝑎, 𝑏] that contains {𝑎, 𝑏}. The collection of all
partitions of [𝑎, 𝑏] is denoted as P[𝑎, 𝑏] (this is my own notation!).

The elements of a partition 𝑃 ∈ P[𝑎, 𝑏] can always be sorted uniquely as 𝑎 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑛 = 𝑏, so |𝑃 | = 𝑛 + 1. The
plus one is there because we’re really talking about the endpoints.

We will frequently use the following symbols that I believe deserve their own definition.

Definition 6.2. Suppose 𝑓 : [𝑎, 𝑏] → R is a bounded function and 𝑃 ∈ P[𝑎, 𝑏]. Suppose 𝑃 = {𝑥0, · · · , 𝑥𝑛} where 𝑎 = 𝑥0 <

· · · < 𝑥𝑛 = 𝑏, and let Δ𝑥𝑖 B 𝑥𝑖 −𝑥𝑖−1 for 𝑖 = 1, 2 · · · , 𝑛. Let𝑀𝑖 B sup 𝑓 ( [𝑥𝑖−1, 𝑥𝑖 ]) and𝑚𝑖 B inf 𝑓 ( [𝑥𝑖−1, 𝑥𝑖 ]) (𝑖 = 1, 2, · · · , 𝑛).
We define the upper and lower Darboux sums: 

𝑈 (𝑃, 𝑓 ) B
𝑛∑︁
𝑖=1

𝑀𝑖 · Δ𝑥𝑖 ,

𝐿(𝑃, 𝑓 ) B
𝑛∑︁
𝑖=1

𝑚𝑖 · Δ𝑥𝑖 .

We can now finally define the Darboux integral, which turns out to be equivalent to the Riemann integral. I still don’t know
how to prove that, but it is sufficiently strong. Plus, the sup and the inf are nice.

Definition 6.3. Suppose 𝑓 : [𝑎, 𝑏] → R is a bounded function. We define the upper and lower Darboux integrals as follows:
∫ 𝑏

𝑎

𝑓 B inf
𝑃∈P[𝑎,𝑏 ]

𝑈 (𝑃, 𝑓 ),∫ 𝑏

𝑎

𝑓 B sup
𝑃∈P[𝑎,𝑏 ]

𝐿(𝑃, 𝑓 ).

If the two integrals are equal, then we say that 𝑓 is Riemann integrable, and the integral is defined as the common value:∫ 𝑏

𝑎

𝑓 B

∫ 𝑏

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 .

8We require that the derivative exist on the endpoints of the domain.

24



We denote with R[𝑎, 𝑏] the set of all Riemann integrable function from [𝑎, 𝑏] to R.

We define9 𝑓 ∈ R[𝑎, 𝑎] for any 𝑓 : 𝑆 → R with 𝑎 ∈ 𝑆 . If 𝑓 ∈ R[𝑎, 𝑏], then we also define∫ 𝑎

𝑏

𝑓 B −
∫ 𝑏

𝑎

𝑓 .

I’m pretty certain that for any bounded function, the upper and lower Darboux integrals always exist.

Proposition 6.4. Suppose 𝑓 : [𝑎, 𝑏] → R is a bounded function and 𝑓 ( [𝑎, 𝑏]) ⊂ [𝑚,𝑀]. Then, for all 𝑃 ∈ P[𝑎, 𝑏],

𝑚 · (𝑏 − 𝑎) ≤ 𝐿(𝑃, 𝑓 ) ≤ 𝑈 (𝑃, 𝑓 ) ≤ 𝑀 · (𝑏 − 𝑎).

Proof. Observe that

𝑚 · (𝑏 − 𝑎) =
𝑛∑︁
𝑖=1

𝑚 · Δ𝑥𝑖 ≤
𝑛∑︁
𝑖=1

𝑚𝑖 · Δ𝑥𝑖 = 𝐿(𝑃, 𝑓 ).

Similarly,

𝐿(𝑃, 𝑓 ) =
𝑛∑︁
𝑖=1

𝑚𝑖 · Δ𝑥𝑖 ≤
𝑛∑︁
𝑖=1

𝑀𝑖 · Δ𝑥𝑖 = 𝑈 (𝑃, 𝑓 ),

and

𝑈 (𝑃, 𝑓 ) =
𝑛∑︁
𝑖=1

𝑀𝑖 · Δ𝑥𝑖 ≤
𝑛∑︁
𝑖=1

𝑀 · Δ𝑥𝑖 = 𝑀 · (𝑏 − 𝑎).

The proof is complete. □

This proof above uses a couple facts: the infimum is less than or equal to the supremum; the infimum of a subset is at least
the infimum of the superset.

We cannot move forward without talking about refinements.

Definition 6.5. Suppose 𝑃, 𝑃∗ ∈ P[𝑎, 𝑏]. We say that 𝑃∗ is a refinement of 𝑃 iff 𝑃 ⊂ 𝑃∗.

Proposition 6.6. Suppose 𝑓 : [𝑎, 𝑏] → R is a bounded function and let 𝑃, 𝑃∗ ∈ P[𝑎, 𝑏] be given. If 𝑃∗ is a refinement of 𝑃 ,
then

𝐿(𝑃, 𝑓 ) ≤ 𝐿(𝑃∗, 𝑓 ) ≤ 𝑈 (𝑃∗, 𝑓 ) ≤ 𝑈 (𝑃, 𝑓 ) .

Proof. Let 𝑃 = {𝑥0, · · · , 𝑥𝑛} such that 𝑎 = 𝑥0 < · · · < 𝑥𝑛 = 𝑏 and let 𝑃∗ = {𝑥0, · · · , 𝑥ℓ } such that 𝑎 = 𝑥0 < · · · < 𝑥ℓ = 𝑏. For
any 𝑖 ∈ {0, · · · , 𝑛} define 𝑛𝑖 ∈ {0, · · · , ℓ} such that 𝑥𝑖 = 𝑥𝑛𝑖 . Then,

𝐿(𝑃, 𝑓 ) =
𝑛∑︁
𝑖=1

inf 𝑓 ( [𝑥𝑖−1, 𝑥𝑖 ] · Δ𝑥𝑖 =
𝑛∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=𝑛𝑖−1+1

inf 𝑓 ( [𝑥𝑖−1, 𝑥𝑖 ]) · Δ𝑥 𝑗 ≤
𝑛∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=𝑛𝑖−1+1

inf 𝑓 ( [𝑥 𝑗−1, 𝑥 𝑗 ]) · Δ𝑥 𝑗 = 𝐿(𝑃∗, 𝑓 ).

By similar reasoning,𝑈 (𝑃∗, 𝑓 ) ≤ 𝑈 (𝑃, 𝑓 ), and the middle inequality follows from Proposition 6.4. □

Also, a coarse bound for the integral is given here.

Proposition 6.7. Suppose 𝑓 ∈ R[𝑎, 𝑏] and 𝑓 ( [𝑎, 𝑏]) ⊂ [𝑚,𝑀]. Then,

𝑚 · (𝑏 − 𝑎) ≤
∫ 𝑏

𝑎

𝑓 ≤ 𝑀 · (𝑏 − 𝑎).
9This is define, not redefine, because P[𝑎, 𝑎] ≜ {{𝑎}} means that neither 𝑈 (𝑃, 𝑓 ) nor 𝐿 (𝑃, 𝑓 ) is well-defined for any (or rlly jus the unique) 𝑃 ∈

P[𝑎,𝑏 ]: 𝑛 = 0, so the sum from 𝑖 = 1 to 𝑛 is undefined.
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Proof. Let 𝑃 ∈ P[𝑎, 𝑏] be an arbitrary partition of [𝑎, 𝑏]. Then, by Proposition 6.4, we have

𝑚 · (𝑏 − 𝑎) ≤ 𝐿(𝑃, 𝑓 ) and 𝑈 (𝑃, 𝑓 ) ≤ 𝑀 · (𝑏 − 𝑎).

Taking the supremum for the inequality on the left and the infimum on the right,

𝑚 · (𝑏 − 𝑎) ≤
∫ 𝑏

𝑎

𝑓 ≤ 𝑀 · (𝑏 − 𝑎).

The proof is finished. □

I should really state that the integral is bounded by any lower and upper Darboux sum.

Proposition 6.8. Suppose 𝑓 ∈ R[𝑎, 𝑏] and 𝑃 ∈ P[𝑎, 𝑏]. Then, 𝐿(𝑃, 𝑓 ) ≤
∫ 𝑏

𝑎
𝑓 ≤ 𝑈 (𝑃, 𝑓 ).

Proof. Well, the integral is both the sup and the inf. We’re done. □

We also state an important equivalent characterization of Riemann integrability based on 𝜖 .

Proposition 6.9. Suppose 𝑓 : [𝑎, 𝑏] → R is a bounded function. Then, 𝑓 ∈ R[𝑎, 𝑏] if and only if for all 𝜖 > 0, there exists
some partition 𝑃 ∈ P[𝑎, 𝑏] such that

𝑈 (𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) < 𝜖.

Proof. “If” Direction. Let 𝜖 > 0 be given. Then, 0 ≤
∫ 𝑏

𝑎
𝑓 −

∫ 𝑏

𝑎
𝑓 ≤ 𝑈 (𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 ) < 𝜖, so∫ 𝑏

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 ,

and hence 𝑓 ∈ R[𝑎, 𝑏].

“Only If” Direction. Suppose 𝑓 ∈ R[𝑎, 𝑏]. Let 𝜖 > 0 be given, and denote with 𝐼 the integral
∫ 𝑏

𝑎

𝑓 . Choose partitions
𝑃,𝑄 ∈ P[𝑎, 𝑏] such that

𝑈 (𝑃, 𝑓 ) − 𝐼 < 𝜖/2 and 𝐼 − 𝐿(𝑃, 𝑓 ) < 𝜖/2.

Adding the two then gives 𝑈 (𝑃, 𝑓 ) − 𝐿(𝑄, 𝑓 ) < 𝜖 . Now let 𝑃∗ B 𝑃 ∪ 𝑄 ∈ P[𝑎, 𝑏], which is a refinement of both 𝑃 and 𝑄 .
Therefore, by Proposition 6.6,

𝑈 (𝑃∗, 𝑓 ) − 𝐿(𝑃∗, 𝑓 ) ≤ 𝑈 (𝑃, 𝑓 ) − 𝐿(𝑄, 𝑓 ) < 𝜖.

The proof is complete. □

This also translates to a sequential characterization. Note that here 𝑛 denotes the index of the sequence, not the number of
sub-intervals corresponding to a partition.

Proposition 6.10. Suppose 𝑓 : [𝑎, 𝑏] → R is a bounded function. Then, 𝑓 ∈ R[𝑎, 𝑏] if and only if there exists a sequence
of partition {𝑃𝑛}∞𝑛=1 of [𝑎, 𝑏] such that

lim
𝑛→∞

(
𝑈 (𝑃𝑛, 𝑓 ) − 𝐿(𝑃𝑛, 𝑓 )

)
= 0.

If so, then
∫ 𝑏

𝑎

= lim
𝑛→∞

𝑈 (𝑃𝑛, 𝑓 ) = lim
𝑛→∞

𝐿(𝑃𝑛, 𝑓 ).

Proof. “If” Direction. Let 𝜖 > 0 be given. Fix 𝑁 ∈ N such that for all 𝑛 > 𝑁 , 𝑈 (𝑃𝑛, 𝑓 ) − 𝐿(𝑃𝑛, 𝑓 ) < 𝜖 . In particular,
𝑈 (𝑃𝑁+1, 𝑓 ) − 𝐿(𝑃𝑁+1, 𝑓 ) < 𝜖 , which implies integrability by Proposition 6.9.

“Only If” Direction. For any 𝑛 ∈ N, fix 𝑃𝑛 ∈ P[𝑎, 𝑏] such that 𝑈 (𝑃𝑛, 𝑓 ) − 𝐿(𝑃𝑛, 𝑓 ) < 1/𝑛. Then, by Proposition 3.24,
lim𝑛→∞

(
𝑈 (𝑃𝑛, 𝑓 ) − 𝐿(𝑃𝑛, 𝑓 )

)
< 𝜖 .
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Denote with 𝐼 the integral
∫ 𝑏

𝑎

𝑓 , and observe that 𝐿(𝑃𝑛, 𝑓 ) ≤ 𝐼 ≤ 𝑈 (𝑃𝑛, 𝑓 ) for all 𝑛 ∈ N. Therefore, by Proposition 3.20,

lim
𝑛→∞

𝐿(𝑃𝑛, 𝑓 ) ≤ 𝐼 ≤ lim
𝑛→∞

𝑈 (𝑃𝑛, 𝑓 ).

Since both limits tend to the same value, we conclude that

𝐼 = lim
𝑛→∞

𝑈 (𝑃𝑛, 𝑓 ) = lim
𝑛→∞

𝐿(𝑃𝑛, 𝑓 ).

The proof is complete. □

6.1 Additivity, Linearity, and Conditions of Convergence

Here, we use the word “additivity” to talk about how integrals can be broken down to integrals on sub-intervals.

Proposition 6.11. Suppose 𝑓 : [𝑎, 𝑐] → R is bounded and 𝑏 ∈ (𝑎, 𝑐). Then,
∫ 𝑐

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 ,∫ 𝑐

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 .

Proof. First, suppose 𝑃1 ∈ P[𝑎, 𝑏] and 𝑃2 ∈ P[𝑏, 𝑐] are arbitrary. Then, 𝑃 B 𝑃1 ∪ 𝑃2 ∈ P[𝑎, 𝑐]. Therefore,∫ 𝑐

𝑎

𝑓 ≥ 𝐿(𝑃, 𝑓 ) = 𝐿(𝑃1, 𝑓 ) + 𝐿(𝑃2, 𝑓 ).

Taking the supremum on the right hand side over 𝑃1 and 𝑃2, we obtain∫ 𝑐

𝑎

𝑓 ≥ sup
𝑃1

𝐿(𝑃1, 𝑓 ) + sup
𝑃2

𝐿(𝑃2, 𝑓 ) =
∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 .

Now suppose instead 𝑃 ∈ P[𝑎, 𝑐] is arbitrary. Define 𝑃 ′ B 𝑃 ∪ {𝑏} ∈ P[𝑎, 𝑐], which is a refinement of 𝑃 , and let 𝑃1 B

𝑃 ′ ∩ [𝑎, 𝑏] ∈ P[𝑎, 𝑏] and 𝑃2 B 𝑃 ′ ∩ [𝑏, 𝑐] ∈ P[𝑏, 𝑐]. Therefore,

𝐿(𝑃, 𝑓 ) ≤ 𝐿(𝑃 ′, 𝑓 ) = 𝐿(𝑃1, 𝑓 ) + 𝐿(𝑃2, 𝑓 ) ≤
∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 .

Taking the supremum on the left hand side over 𝑃 , we obtain∫ 𝑐

𝑎

𝑓 ≤
∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 .

Thus, ∫ 𝑐

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 .

The same argument follows for the upper Darboux integrals, from which we conclude∫ 𝑐

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 .

The proof is complete. □

So this one is clever since we avoid equalities, but utilize all the inequalities that we can leverage. Also note that the
construction of 𝑃 ′, by adding 𝑏 as a partition point (if it’s not already in 𝑃 ig), we can split the sums directly. And the
inequalities for refined partitions (Proposition 6.6) let us complete the transitions.
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Proposition 6.12. Suppose 𝑓 ∈ R[𝑎, 𝑐], and 𝑏 ∈ (𝑎, 𝑐). Then, 𝑓 | [𝑎,𝑏 ] ∈ R[𝑎, 𝑏] and 𝑓 | [𝑏,𝑐 ] ∈ R[𝑏, 𝑐], and∫ 𝑐

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 .

Proof. By Proposition 6.11, we have ∫ 𝑐

𝑎

𝑓 =


∫ 𝑐

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 ,∫ 𝑐

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 .

Subtracting the RHS of the top equation from the RHS of the bottom equation, we have( ∫ 𝑏

𝑎

𝑓 −
∫ 𝑏

𝑎

𝑓

)
+

( ∫ 𝑐

𝑏

𝑓 −
∫ 𝑐

𝑏

𝑓

)
= 0.

Since both parenthesized expressions above are necessarily non-negative, they must both be zero. Therefore,∫ 𝑏

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 and
∫ 𝑐

𝑏

𝑓 =

∫ 𝑐

𝑏

𝑓 .

Thus, 𝑓 | [𝑎,𝑏 ] ∈ R[𝑎, 𝑏] and 𝑓 | [𝑏,𝑐 ] ∈ R[𝑏, 𝑐]. Further,∫ 𝑐

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 .

The proof is finished. □

Corollary 6.13. Suppose 𝑓 ∈ R[𝑎, 𝑑] and 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 . Then, 𝑓 | [𝑏,𝑐 ] ∈ R[𝑏, 𝑐].

Proof. First, we have 𝑓 | [𝑎,𝑏 ] ∈ R[𝑎, 𝑏] and 𝑓 | [𝑏,𝑑 ] ∈ R[𝑏, 𝑑]. Then, applying the Proposition on the last integral, 𝑓 | [𝑏,𝑐 ] ∈ R[𝑏, 𝑐]
and 𝑓 | [𝑐,𝑑 ] ∈ R[𝑐, 𝑑]. □

Linearity is arguably the most important aspect of the definite integral.

Proposition 6.14. Let 𝑓 , 𝑔 ∈ R[𝑎, 𝑏] and 𝑐 ∈ R. Then,

• (𝑓 + 𝑔) ∈ R[𝑎, 𝑏], and
∫ 𝑏

𝑎
(𝑓 + 𝑔) =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑏

𝑎
𝑔;

• (𝑐 𝑓 ) ∈ R[𝑎, 𝑏], and
∫ 𝑏

𝑎
(𝑐 𝑓 ) = 𝑐

∫ 𝑏

𝑎
𝑓 .

A useful fact: inf (𝑓 + 𝑔) (𝑥) ≥ inf 𝑓 (𝑥) + inf 𝑔(𝑥) and sup(𝑓 + 𝑔) (𝑥) ≤ sup 𝑓 (𝑥) + sup𝑔(𝑥), where the supremum and the
infimum are taken over 𝑥 ∈ 𝑆 for some 𝑆 with 𝑓 , 𝑔 : 𝑆 → R. Also, the supremum and the infimum preserves non-strict
inequalities for functions over a common domain.

Proof. We begin with the first item. For an arbitrary 𝑃 ∈ P[𝑎, 𝑏],

𝐿(𝑃, 𝑓 + 𝑔) =
𝑛∑︁
𝑖=1

inf (𝑓 + 𝑔) ( [𝑥𝑖−1, 𝑥𝑖 ]) · Δ𝑥𝑖 ≥
𝑛∑︁
𝑖=1

(inf 𝑓 ( [𝑥𝑖−1, 𝑥𝑖 ]) + inf 𝑔( [𝑥𝑖−1, 𝑥𝑖 ]))) · Δ𝑥𝑖 = 𝐿(𝑃, 𝑓 ) + 𝐿(𝑃,𝑔),

so taking the supremum of yields
∫ 𝑏

𝑎
(𝑓 + 𝑔) ≥

∫ 𝑏

𝑎
𝑓 +

∫ 𝑏

𝑎
𝑔 =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑏

𝑎
𝑔. Similarly,

𝑈 (𝑃, 𝑓 + 𝑔) =
𝑛∑︁
𝑖=1

sup(𝑓 + 𝑔) ( [𝑥𝑖−1, 𝑥𝑖 ]) · Δ𝑥𝑖 ≤
𝑛∑︁
𝑖=1

(sup 𝑓 ( [𝑥𝑖−1, 𝑥𝑖 ]) + sup𝑔( [𝑥𝑖−1, 𝑥𝑖 ])) · Δ𝑥𝑖 = 𝑈 (𝑃, 𝑓 ) +𝑈 (𝑃,𝑔).
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Taking the infimum gives
∫ 𝑏

𝑎
(𝑓 + 𝑔) ≤

∫ 𝑏

𝑎
𝑓 +

∫ 𝑏

𝑎
𝑔 =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑏

𝑎
𝑔. Thus,∫ 𝑏

𝑎

𝑓 +
∫ 𝑏

𝑎

𝑔 ≤
∫ 𝑏

𝑎

(𝑓 + 𝑔) ≤
∫ 𝑏

𝑎

(𝑓 + 𝑔) ≤
∫ 𝑏

𝑎

𝑓 +
∫ 𝑏

𝑎

𝑔.

Therefore, the non-strict inequalities must be equalities. Hence (𝑓 + 𝑔) ∈ R[𝑎, 𝑏] and∫ 𝑏

𝑎

(𝑓 + 𝑔) =
∫ 𝑏

𝑎

𝑓 +
∫ 𝑏

𝑎

𝑔.

For the second item, first consider the case 𝑐 > 0. We have by definition

∫ 𝑏

𝑎

(𝑐 𝑓 ) = sup
𝑃∈P[𝑎,𝑏 ]

𝑛∑︁
𝑖=1

inf (𝑐 𝑓 ) ( [𝑥𝑖−1, 𝑥𝑖 ]) · Δ𝑥𝑖 = 𝑐
𝑛∑︁
𝑖=1

inf 𝑓 ( [𝑥𝑖−1, 𝑥𝑖 ]) · Δ𝑥𝑖 = 𝑐
∫ 𝑏

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 , 10,∫ 𝑏

𝑎

(𝑐 𝑓 ) = sup
𝑃∈P[𝑎,𝑏 ]

𝑛∑︁
𝑖=1

sup(𝑐 𝑓 ) ( [𝑥𝑖−1, 𝑥𝑖 ]) · Δ𝑥𝑖 = 𝑐
𝑛∑︁
𝑖=1

sup𝑓 ( [𝑥𝑖−1, 𝑥𝑖 ]) · Δ𝑥𝑖 = 𝑐
∫ 𝑏

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 .

We similarly conclude that the lower and upper Darboux sums are equals. Hence, (𝑐 𝑓 ) ∈ R[𝑎, 𝑏], and∫ 𝑏

𝑎

(𝑐 𝑓 ) = 𝑐
∫ 𝑏

𝑎

𝑓 .

If 𝑐 < 0, the same argument above applies AS-IS, with the portion in red and the portion in right interchanged in matching
locations. If 𝑐 = 0, then (𝑐 𝑓 ) ∈ R[𝑎, 𝑏] trivially. The proof is complete. □

Now monotonicity.

Proposition 6.15. Suppose 𝑓 , 𝑔 : [𝑎, 𝑏] → R are bounded such that ∀𝑥 ∈ [𝑎, 𝑏], 𝑓 (𝑥) ≤ 𝑔(𝑥). Then,∫ 𝑏

𝑎

𝑓 ≤
∫ 𝑏

𝑎

𝑔 and
∫ 𝑏

𝑎

𝑓 ≤
∫ 𝑏

𝑎

𝑓 .

Consequently, if 𝑓 , 𝑔 ∈ R[𝑎, 𝑏], then ∫ 𝑏

𝑎

𝑓 ≤
∫ 𝑏

𝑎

𝑔.

This is simply a corollary of the fact that 𝑓 (𝑥) ≤ 𝑔(𝑥) implies inf 𝑓 (𝑥) ≤ inf 𝑔(𝑥) and sup 𝑓 (𝑥) ≤ sup𝑔(𝑥).

The big lemma: continuous functions on closed intervals are integrable.

Lemma 6.16. Suppose 𝑓 : [𝑎, 𝑏] → R is continuous. Then, 𝑓 ∈ R[𝑎, 𝑏].

Proof. By the Heine-Borel theorem (Theorem 4.18), 𝑓 is uniformly continuous. Suppose 𝜖 > 0 is given. Fix 𝛿 > 0 such that
whenever |𝑥 − 𝑦 | < 𝛿 (𝑥,𝑦 ∈ [𝑎, 𝑏]), |𝑓 (𝑥) − 𝑓 (𝑦) | < 𝜖/(𝑏 − 𝑎).

Choose an arbitrary 𝑛 ∈ N such that (𝑏 − 𝑎)/𝑛 < 𝛿 and set 𝑃 = {𝑥0, · · · , 𝑥𝑛}, where 𝑥𝑖 = 𝑎 + (𝑏 − 𝑎)𝑖/𝑛 (𝑖 = 0, · · · , 𝑛).
Then, for all 𝑥,𝑦 ∈ [𝑥𝑖−1, 𝑥𝑖 ], |𝑥 − 𝑦 | ≤ Δ𝑥𝑖 = (𝑏 − 𝑎)/𝑛 < 𝛿 , hence |𝑓 (𝑥) − 𝑓 (𝑦) | < 𝜖/(𝑏 − 𝑎). Therefore, sup 𝑓 ( [𝑥𝑖−1, 𝑥𝑖 ]) −
inf 𝑓 ( [𝑥𝑖−1, 𝑥𝑖 ]) < 𝜖/(𝑏 − 𝑎). The equality is strict as a result of the Min-Max theorem (Theorem 4.15).

Hence, ∫ 𝑏

𝑎

𝑓 −
∫ 𝑏

𝑎

𝑓 ≤ 𝑈 (𝑃, 𝑓 ) − 𝐿(𝑃, 𝑓 )

10inf 𝑐𝑆 = 𝑐 inf 𝑆 for a positive 𝑐 : For any 𝜖 > 0 fix 𝑥 ∈ 𝑆 such that 𝑥 − inf 𝑆 < 𝜖/𝑐 , so 𝑐𝑥 − 𝑐 inf 𝑆 < 𝜖 , and hence 𝑐 inf 𝑆 = inf {𝑐𝑥 } = inf 𝑐𝑆 .
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=

𝑛∑︁
𝑖=1

(sup 𝑓 ( [𝑥𝑖−1, 𝑥𝑖 ]) − inf 𝑓 ( [𝑥𝑖−1, 𝑥𝑖 ])) · Δ𝑥𝑖

<

𝑛∑︁
𝑖=1

𝜖

𝑏 − 𝑎 · Δ𝑥𝑖

= 𝜖.

Since the choice of 𝜖 > 0 was arbitrary, we conclude that 0 ≤
∫ 𝑏

𝑎
𝑓 −

∫ 𝑏

𝑎
𝑓 ≤ 0, and hence 𝑓 ∈ R[𝑎, 𝑏]. □

A weirdly specific but somewhat useful result is presented below.

Lemma 6.17. Let 𝑓 : [𝑎, 𝑏] → R be bounded. Let (𝑎𝑛)∞𝑛=1 and (𝑏𝑛)∞𝑛=1 be two sequences such that (i) 𝑎 < 𝑎𝑛 < 𝑏𝑛 < 𝑏 for
all 𝑛 ∈ N, (ii) lim𝑛→∞ 𝑎𝑛 = 𝑎, (iii) lim𝑛→∞ 𝑏𝑛 = 𝑏, and (iv) 𝑓 | [𝑎𝑛,𝑏𝑛 ] ∈ R[𝑎𝑛, 𝑏𝑛] for all 𝑛 ∈ N. Then, 𝑓 ∈ R[𝑎, 𝑏], and∫ 𝑏

𝑎

𝑓 = lim
𝑛→∞

∫ 𝑏𝑛

𝑎𝑛

𝑓 .

Proof. Choose 𝑀 > 0 such that 𝑓 ( [𝑎, 𝑏]) ⊂ [−𝑀,𝑀]. Then,

−𝑀 · (𝑏 − 𝑎) ≤ −𝑀 · (𝑏𝑛 − 𝑎𝑛) ≤
∫ 𝑏𝑛

𝑎𝑛

𝑓 ≤ 𝑀 · (𝑏𝑛 − 𝑎𝑛) ≤ 𝑀 · (𝑏 − 𝑎).

Therefore, the sequence (
∫ 𝑏𝑛

𝑎𝑛
)∞𝑛=1 is bounded. Let (

∫ 𝑏𝑛𝑘
𝑎𝑛𝑘

𝑓 )∞
𝑘=1 be an arbitrary convergent subsequence, whose existence is

guaranteed by the Bolzano-Weierstrass theorem (Theorem 3.17). Thus, by Propositions 6.7 and 6.11, we have∫ 𝑏

𝑎

𝑓 =

∫ 𝑎𝑛𝑘

𝑎

𝑓 +
∫ 𝑏𝑛𝑘

𝑎𝑛𝑘

𝑓 +
∫ 𝑏

𝑏𝑛𝑘

𝑓 ≥ −𝑀 · (𝑎𝑛𝑘 − 𝑎) +
∫ 𝑏𝑛𝑘

𝑎𝑛𝑘

−𝑀 · (𝑏 − 𝑏𝑛𝑘 ).

Taking the limit of the RHS as 𝑘 → ∞, we have∫ 𝑏

𝑎

𝑓 ≥ −𝑀 · 0 + lim
𝑘→∞

∫ 𝑎𝑛𝑘

𝑎𝑛𝑘

𝑓 −𝑀 · 0 = lim
𝑘→∞

∫ 𝑎𝑛𝑘

𝑎𝑛𝑘

𝑓 .

Similarly, we have ∫ 𝑏

𝑎

𝑓 ≤ lim
𝑘→∞

∫ 𝑎𝑛𝑘

𝑎𝑛𝑘

𝑓 .

Therefore,
∫ 𝑏

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 = lim

∫ 𝑎𝑛𝑘
𝑎𝑛𝑘

𝑓 .

We have concluded that every convergent subsequence of (
∫ 𝑏𝑛

𝑎𝑛
𝑓 ) converges to a common value. Suppose now for the sake

of contradiction that (
∫ 𝑏𝑛

𝑎𝑛
𝑓 ) diverges. Then, since the sequence is bounded, Proposition 3.29 implies the limit superior

does not equal the limit inferior. We can thus fix two subsequences converging to the limit superior and the limit inferior
respectively by Proposition 3.28, which is a contradiction. Thus, (

∫ 𝑏𝑛

𝑎𝑛
𝑓 ) converges, and by Proposition 3.15, we conclude

that ∫ 𝑏

𝑎

𝑓 = lim
𝑛→∞

∫ 𝑏𝑛

𝑎𝑛

𝑓 .

The proof is finished. □

We can now remove the restriction of continuity on the endpoints.

Proposition 6.18. Suppose 𝑓 , 𝑔 : [𝑎, 𝑏] → R are bounded such that 𝑓 ∈ R[𝑎, 𝑏] and 𝑓 | (𝑎,𝑏 ) = 𝑔| (𝑎,𝑏 ) . Then, 𝑔 ∈ R[𝑎, 𝑏], and∫ 𝑏

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑔.
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Proof. This is an immediate conclusion of Lemma 6.17. Define two sequences (𝑎𝑛)∞𝑛=1 and (𝑏𝑛)∞𝑛=1 in (𝑎, 𝑏) as
𝑎𝑛 = 𝑎 + 𝑏 − 𝑎3𝑛 ,

𝑎𝑛 = 𝑏 − 𝑏 − 𝑎
3𝑛 .

Clearly, 𝑎 < 𝑎𝑛 < 𝑏𝑛 < 𝑏 for all 𝑛 ∈ N, lim𝑎𝑛 = 𝑎, and lim𝑏𝑛 = 𝑏. Further, since 𝑓 | (𝑎,𝑏 ) = 𝑔 | (𝑎,𝑏 ) , we have 𝑔| [𝑎𝑛,𝑏𝑛 ] =

𝑓 | [𝑎𝑛,𝑏𝑛 ] ∈ R[𝑎, 𝑏] as a result of Corollary 6.13. Thus, 𝑔 ∈ R[𝑎, 𝑏], and∫ 𝑏

𝑎

𝑔 = lim
𝑛→∞

∫ 𝑏𝑛

𝑎𝑛

𝑓 = lim
𝑛→∞

∫ 𝑏𝑛

𝑎𝑛

𝑔 =

∫ 𝑏

𝑎

𝑓 .

The proof is completed. □

It is easy to now show that a bounded function with finitely many discontinuities is necessarily integrable. Also, if 𝑓 ∈
R[𝑎, 𝑏] and 𝑔 : [𝑎, 𝑏] → R is bounded, where 𝑓 and 𝑔 only differ on a finite subset of the domain, then 𝑔 ∈ R[𝑎, 𝑏] and∫ 𝑏

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑔.
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A Dedekind Cuts

Definition A.1. A subset of rational numbers 𝐴 ⊂ Q is said to be a Dedekind11 cut of Q iff it satisfies 𝐴 ≠ ∅ and 𝐴 ≠ Q

with the following two properties:

• ∀𝑥 ∈ 𝐴,∀𝑥 ′ ∈ Q, 𝑥 ′ < 𝑥 ⇒ 𝑥 ′ ∈ 𝐴; consequently, 𝐴 is not bounded from below;

• ∀𝑥 ∈ 𝐴, ∃𝑥 ′ ∈ 𝐴, 𝑥 < 𝑥 ′; that is, 𝐴 does not have a largest element.

The set of all Dedekind cuts of Q is denoted as D ⊂ 2Q.

The key idea here is that we are manually constructing {(−∞, 𝑥)Q | 𝑥 ∈ R}, which D is isomorphic to. Of course, the
notation isn’t justified until we have finished constucting R.

The first thing to do here is to give a good definition of “equality.” Are there technically different (i.e., not equal as sets)
𝐴, 𝐵 ∈ D that should be considered the same number? We saw this before when we defined the set of integers Z as
equivalence classes on Z2

≥0. We said that two integers (𝑎, 𝑏), (𝑐, 𝑑) ∈ Z2
≥0 are said to be equal iff

𝑎 + 𝑑 = 𝑏 + 𝑐,

because the integer represented by (𝑎, 𝑏) is really “𝑎−𝑏.” In this sense, we have “more” numbers in Z2
≥0 than we need in Z12

So, Z is not Z2
≥0 per se but that product up to the equivalence relation described above. However, we’ll see that this is not

an issue for us here.

Since our construction of R isn’t as “explicit” as, say, Z, we need to characterize the behavior of this equivalence relation
we want in a somewhat roundabout way. We’ll first define a partial ordering, and then show that for any two Dedekind
cuts𝐴 and 𝐵, either𝐴 ≤ 𝐵 or 𝐵 ≤ 𝐴, which will suffice for us to show that each set represents a unique real number. In this
sense, D is just R; there are no duplicates of representations of real numbers in D.

Definition A.2. The partial ordering ≤ is defined on D as follows. Let 𝐴, 𝐵 ∈ D. We say that 𝐴 ≤ 𝐵 iff 𝐴 ⊆ 𝐵.

It is clearly reflexive, antisymmetric, and transitive. Let’s now show that indeed any two cuts 𝐴, 𝐵 ∈ D can be compared;
that is,

∀𝐴, 𝐵 ∈ D, 𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴.

Proof. Let 𝐴, 𝐵 be Dedekind cuts of Q.

If there exists 𝑥 with 𝑥 ∈ 𝐴 but 𝑥 ∉ 𝐵, then 𝑆 ≔ {𝑥 ′ ∈ Q | 𝑥 ′ ≤ 𝑥} ⊆ 𝐴 by definition. Since 𝑥 ∉ 𝐵, so 𝑥 ′ ≤ 𝑥 for any 𝑥 ′ ∈ 𝐵.
Further, by definition, we can choose some 𝑥 ∈ 𝐴 strictly greater than 𝑥 , so

∀𝑥 ′ ∈ 𝐵, 𝑥 ′ ≤ 𝑥 < 𝑥 .

Since 𝑥 ∈ 𝐴, we conclude that ∀𝑥 ′ ∈ 𝐵, 𝑥 ′ ∈ 𝐴. Thus, 𝐵 ⊆ 𝐴, so 𝐵 ≤ 𝐴.

If there exists 𝑥 with 𝑥 ∈ 𝐵 but 𝑥 ∉ 𝐴, we may apply the same argument to obtain 𝐴 ⊆ 𝐵, or 𝐴 ≤ 𝐵.

Otherwise, we have 𝐴\𝐵 = ∅ or 𝐵\𝐴 = ∅. This implies that 𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴, which still gives 𝐴 ≤ 𝐵 or 𝐵 ≤ 𝐴. The proof is
completed. □

Sweet. In our proof, we repeatedly leverage the two properties of Dedekind cuts, both of which are characterizations of the
open interval (−∞, 𝑥)Q for 𝑥 ∈ R. This also reassures us that we don’t need to define another equivalence relation, different
from the “=” relation, to characterize the equality of real numbers.

11This is pronounced as /"dei:d@kInt/, similar to DAY-duh-kint in English.
12Of course they’re still the same in cardinality.
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Alright. Let’s first say that ∀𝑥 ∈ Q, (−∞, 𝑥)Q ∈ D. Note that here, 𝑥 ∈ Q, so we aren’t dabbling with self-referencing or
other weird shii like that. We will denote (−∞, 𝑥)Q with [𝑥].13 We’ll also prove that the two partial orderings defined match;
that is, [𝑥] ≤ [𝑦] ⇔ 𝑥 ≤ 𝑦 for 𝑥,𝑦 ∈ Q.

Proof. Fix an arbitrary 𝑥 ∈ Q. Then, [𝑥] = {𝑥 ′ ∈ Q | 𝑥 ′ < 𝑥}. Clearly, [𝑥] ≠ ∅ and [𝑥] ≠ Q. We now verify the two
properties of Dedekind cuts.

Fix 𝑢 ∈ [𝑥] and 𝑣 ∈ Q with 𝑣 < 𝑢. Then, 𝑣 < 𝑢 < 𝑥 , so 𝑣 ∈ (−∞, 𝑥)Q = [𝑥]. The first property is satisfied.

Fix 𝑢 ∈ [𝑥]. Let 𝑣 = (𝑢 + 𝑥)/2, so 𝑢 < 𝑣 < 𝑥 and thus 𝑣 ∈ [𝑥]. The second property is also satisfied. We conclude that [𝑥] is
indeed a Dedekind cut.

Now suppose 𝑥,𝑦 ∈ Q. If 𝑥 = 𝑦, then [𝑥] = [𝑦]. If 𝑥 < 𝑦, then [𝑥] ⊊ [𝑦], so [𝑥] < [𝑦]. If 𝑥 > 𝑦, then for the same reason
we have [𝑥] > [𝑦]. The proof is finished. □

In addition, we can safely claim that [𝑥] is unique for any 𝑥 ∈ Q, so we’ve successfully captured all the rational numbers in
D, with no duplicates. We say that 𝐴 ∈ D is rational iff ∃𝑥 ∈ Q, [𝑥] = 𝐴.

Proof. Suppose that [𝑥] = [𝑦] for 𝑥,𝑦 ∈ Q. Then, (−∞, 𝑥)Q = (−∞, 𝑦)Q. Suppose for the sake of contradiction that 𝑥 ≠ 𝑦.
Without loss of generality, assume 𝑥 < 𝑦. Then, 𝑥 < (𝑥 + 𝑦)/2 < 𝑦, so (𝑥 + 𝑦)/2 ∉ [𝑥] but (𝑥 + 𝑦)/2 ∈ [𝑦], so [𝑥] ≠ [𝑦],
which is a contradiction. The proof is finished. □

The next step is to define addition and the additive inverse as well as multiplication and the multiplicative inverse.

Addition is super straightforward so I’ll just state it here.

Definition A.3. Let 𝐴, 𝐵 ∈ D. We define 𝐴 + 𝐵 ≔ {𝑎 + 𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}.

This is obviously a Dedekind cut and further, compatible with rational addition. We will prove the latter statement.

Proof. Observe that [𝑥] + [𝑦] ≜ {𝑢 + 𝑣 | 𝑢 ∈ [𝑥], 𝑣 ∈ [𝑦]} = {𝑢 + 𝑣 | 𝑢, 𝑣 ∈ Q ∧ 𝑢 < 𝑥 ∧ 𝑣 < 𝑦} = {(𝑢 + 𝑣) ∈ Q | (𝑢 + 𝑣) <
𝑥 + 𝑦} = [𝑥 + 𝑦], which completes the proof. □

And it’s compatible with field axioms (A1) through (A4), stated without proof just because it’s super straightforward and
I’m way too lazy to do that.

Additive inverse is a weird thing… I guess we can flip it and then take the complement. But then if it’s representing a
rational number 𝑥 , we need to also take out 𝑥 from −𝑥 ≜ (−∞,−𝑥]Q to get (−∞,−𝑥)Q = [−𝑥].

Definition A.4. Let𝐴 ∈ D. If [𝑎] = 𝐴 for some 𝑎 ∈ Q, then we define −𝐴 ≔ (−∞,−𝑎)Q. Otherwise, we define −𝐴 ≔ {−𝑎 |
𝑎 ∈ Q\𝐴}.

Since the construction isn’t as natural, we should show that it is closed in D. In order to do that, let’s first establish another
property of Dedekind cuts of Q.

Proposition A.5. Let 𝐴 ∈ D be a Dedekind cut of Q. For any 𝑏 ∈ Q, 𝑏 is an upper bound of 𝐴 in Q if and only if 𝑏 ∉ 𝐴.

Proof. We first prove that if 𝑏 is an upper bound of 𝐴 in Q, then 𝑏 ∉ 𝐴. Suppose for the sake of contradiction that 𝑏 ∈ 𝐴 is
an upper bound of 𝐴. Since 𝑏 ∈ 𝐴, by definition, we may choose some 𝑏′ ∈ 𝐴 such that 𝑏′ > 𝑏. However, this contradicts
the fact that 𝑏 is an upper bound.

Let us now show that if 𝑏 ∉ 𝐴, then 𝑏 is an upper bound. Negating property 1 of Dedekind cuts, we have ∀𝑥 ∈ 𝐴,𝑏 ≥ 𝑥 , so
𝑏 is indeed an upper bound. The proof is finished. □

13Not to be confused with the floor function ⌊ ·⌋.
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Now that we have all we need, let’s start.

Proof. Let 𝐴 = [𝑥], where 𝑥 ∈ Q. Then, [−𝑥] = (−∞,−𝑎)Q, which we have shown must be in D.

Otherwise, we have −𝐴 = {−𝑎 | 𝑎 ∈ Q\𝐴}. Clearly, −𝐴 ≠ ∅ and −𝐴 ≠ Q. We examine the first property.

Choose an arbitrary 𝑥 ∈ −𝐴 and 𝑥 ′ ∈ Q with 𝑥 ′ < 𝑥 . Since 𝑥 ∈ −𝐴, we have −𝑥 ∉ 𝐴, so ∀𝑎 ∈ 𝐴,−𝑥 ≥ 𝑎. Since 𝑥 ′ < 𝑥 , by
transitivity, we have ∀𝑎 ∈ 𝐴,−𝑥 ′ ≥ 𝑎, so −𝑥 ′ is an upper bound of𝐴. By Prop. A.5, we conclude that −𝑥 ′ ∉ 𝐴, or −𝑥 ′ ∈ Q\𝐴.
Therefore, 𝑥 ′ ∈ −𝐴. The first property is satisfied.

Now fix an arbitrary 𝑥 ∈ −𝐴, so −𝑥 ∈ Q\𝐴. Then, by Prop. A.5, we conclude that 𝑏 ≔ −𝑥 is an upper bound of 𝐴 and is
not in 𝐴. Suppose for the sake of contradiction that ∀𝑏′ ∈ Q, 𝑏′ < 𝑏 ⇒ 𝑏′ ∈ 𝐴. By supposition, we can already conclude
that [𝑏] ⊆ 𝐴. Now fix an arbitrary 𝑎 ∈ 𝐴. Since 𝑏 is an upper bound of 𝐴, we have 𝑏 ≥ 𝑎. Since 𝑏 ∉ 𝐴, it is impossible that
𝑎 = 𝑏; thus, 𝑎 < 𝑏. Therefore, ∀𝑎 ∈ 𝐴, 𝑎 < 𝑏. Therefore, 𝐴 ⊆ [𝑏], and we conclude that 𝐴 = [𝑏]. This is a contradiction, since
𝐴 ≠ [𝑥] for any 𝑥 ∈ Q. The proof is completed. □

Well, weird definition, but at least it’s defined to be compatible with rational additive inverses. We’ll need to show that it’s
also compatible with field axiom (A5); that is, ∀𝐴 ∈ D, 𝐴 + (−𝐴) = [0]. Before we dive in, let’s prove another property
of Dedekind cuts that captures the fact that it has some sort of “least upper bound,” even though it may not be a rational
number per se.

Proposition A.6. Suppose 𝐴 ∈ D. Then ∀𝜖 > 0, ∃𝑎 ∈ 𝐴, 𝑎 + 𝜖 ∉ 𝐴.

Proof. Suppose on the contrary that there exists some 𝜖 > 0 such that ∀𝑎 ∈ 𝐴, 𝑎 + 𝜖 ∈ 𝐴. Induction allows us to conclude
that, in fact, ∀𝑛 ∈ N,∀𝑎 ∈ 𝐴, 𝑎 + 𝑛𝜖 ∈ 𝐴. Choose an arbitrary 𝑥 ∈ Q. Since 𝜖 > 0, we may use the Archimedean property of
rationals to justify our choice of some 𝑛 ∈ N such that 𝑛𝜖 > 𝑥 − 𝑎 ∈ Q. Then, 𝑎 + 𝑛𝜖 > 𝑥 . Since 𝑎 + 𝑛𝜖 ∈ 𝐴, we conclude by
definition that 𝑥 ∈ 𝐴. Since the choice of 𝑥 was arbitrary, we have Q ⊆ 𝐴, which contradicts the fact that 𝐴 ∈ D ⊂ 2Q and
𝐴 ≠ Q. The proof is finished. □

I want to point out that it doesn’t matter whether 𝜖 ∈ R+ or 𝜖 ∈ Q+; the effects are equivalent at least throughout this
article.

Now let’s prove that indeed our definition of the additive inverse is compatible with (A5).

Proof. Suppose 𝐴 ∈ D. If [𝑎] = 𝐴 for some 𝑎 ∈ Q, then [𝑎] + [−𝑎] = {𝑥 ∈ Q | 𝑥 < 𝑎 + (−𝑎) = 0} = [0].

Otherwise, we have
𝐴 + (−𝐴) = 𝐴 + {−𝑏 | 𝑏 ∈ Q\𝐴} = {𝑎 − 𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝑄\𝐴}.

In order for this to be equal to [0], we need to show both 𝐴 + (−𝐴) ⊆ [0] and [0] ⊆ 𝐴 + (−𝐴).

Suppose 𝑎 ∈ 𝐴 and 𝑏 ∈ Q\𝐴. Then, by construction, 𝑏 ∉ 𝐴, so 𝑏 ≥ 𝑎 by definition. Suppose now for the sake of contradiction
that 𝑎 = 𝑏. Then, 𝑎 = 𝑏 ∈ 𝐴 ∩ (Q\𝐴) = ∅, which is impossible. Thus, we can conclude that 𝑏 > 𝑎, and thus 𝑎 − 𝑏 < 0. That
is, 𝐴 + (−𝐴) ⊆ [0].

Now we need to show that [0] ⊆ {𝑎 − 𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ Q\𝐴}, or equivalently,

∀𝑥 ∈ Q, 𝑥 < 0 ⇒ ∃𝑎 ∈ 𝐴, ∃𝑏 ∈ Q\𝐴, 𝑎 − 𝑏 = 𝑥 .

Suppose 𝑥 < 0 is rational. Let 𝜖 = −𝑥 > 0. Applying Prop. A.6, we conclude that there exists some 𝑎 ∈ 𝐴 such that
𝑎 + 𝜖 = 𝑎 − 𝑥 ∉ 𝐴. Let 𝑏 = 𝑎 − 𝑥 , then 𝑏 ∈ Q\𝐴. Then, we have 𝑎 − 𝑏 = 𝑥 , and the proof is completed. □

Multiplication is a bit trickier, since we need to consider the sign. For this reason, I’ll be verbose and give the definition of
positive reals, negative reals, and absolute values.
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Definition A.7. Let 𝐴 ∈ D be a Dedekind cut of Q. 𝐴 is said to be positive if 𝐴 > [0] and negative if 𝐴 < [0]. We define

|𝐴| =
{
𝐴, 𝐴 ≥ [0],
−𝐴, otherwise.

Now let’s define multiplication:

Definition A.8. Let 𝐴, 𝐵 ∈ D be Dedekind cuts of Q. Suppose 𝐴 ≤ [0] and 𝐵 ≤ [0]. Define

Π ≔ {𝑎𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}.

Then, the product of 𝐴 and 𝐵 is defined as

𝐴 · 𝐵 ≔ {𝑥 ∈ Q | ∃𝜖 > 0, 𝑥 + 𝜖 ∉ Π}.

If exactly one of the two is positive, then the product is defined as 𝐴 · 𝐵 ≔ −(− |𝐴|) · (− |𝐵 |). If both are positive, then the
product is defined as 𝐴 · 𝐵 ≔ (−𝐴) · (−𝐵).

Since the construction isn’t as natural, we should show that multiplication is closed in D.

Proof. Let 𝐴, 𝐵 ∈ D be a Dedekind cut of Q.

If 𝐴 ≤ [0] and 𝐵 ≤ [0], then define Π ≔ {𝑎𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}, so 𝐴 · 𝐵 = {𝑥 ∈ Q | ∃𝜖 > 0, 𝑥 + 𝜖 ∉ Π}. Clearly, Π ≠ ∅ and
Π ≠ Q by construction (why?), so 𝐴 · 𝐵 is neither empty nor equal to Q.

Let us first prove an important proposition that ∀𝛼 ∈ Π,∀𝛽 ∈ Q, 𝛽 > 𝛼 ⇒ 𝛽 ∈ Π. Let 𝛼 = 𝑎𝑏 where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Then,

𝛽 = 𝛼 + 𝛽 − 𝛼 = 𝑎𝑏 + (𝛽 − 𝛼) · 𝑎/𝑎 = 𝑎 ·
(
𝑏 + 𝛽 − 𝛼

𝑎

)
.

Clearly, 𝑎 < 0. Since 𝛽 > 𝛼 , we have 𝛽 − 𝛼 > 0 and thus 𝛽 − 𝛼
𝑎

< 0. Therefore, 𝑏 + 𝛽 − 𝛼
𝑎

< 𝑏, and from property 1 of

Dedekind cuts we conclude that 𝑏′ ≔
(
𝑏 + 𝛽 − 𝛼

𝑎

)
∈ 𝐵. Since 𝛽 = 𝑎𝑏′ for some 𝑎 ∈ 𝐴 and 𝑏′ ∈ 𝐵, we conclude that 𝛽 ∈ Π.

Now we show that the two properties of Dedekind cuts are satisfied. Choose arbitrary 𝑥 ∈ 𝐴 ·𝐵 and 𝑥 ′ ∈ Q such that 𝑥 ′ < 𝑥 .
Suppose for the sake of contradiction that 𝑥 ′ ∉ 𝐴 · 𝐵, so 𝑥 ′ + 𝜖 ∈ Π for any 𝜖 > 0. Note that 𝑥 ′ < 𝑥 , so 𝑥 ′ + 𝜖 < 𝑥 + 𝜖 . From
the proposition proven above (with 𝛼 = 𝑥 ′ + 𝜖 and 𝛽 = 𝑥 + 𝜖), we conclude that 𝑥 + 𝜖 ∈ Π, which contradicts the fact that
𝑥 ∈ 𝐴 · 𝐵. The first property has been proven.

Fix arbitrary 𝑥 ∈ 𝐴 · 𝐵. Then, there exists some 𝜖0 > 0 such that 𝑥 + 𝜖0 ∉ Π. Now consider 𝑥 ′ ≔ 𝑥 + 𝜖0/3. Then, if 𝜖 = 𝜖0/3,
we have 𝑥 ′ + 𝜖 = 𝑥 + 2/3 · 𝜖0 < 𝑥 + 𝜖0. Suppose 𝑥 ′ + 𝜖 ∈ Π. Then, since 𝑥 + 𝜖0 > 𝑥 ′ + 𝜖 , 𝑥 + 𝜖0 must be an element of Π, which
is a contradiction. Thus, 𝑥 ′ + 𝜖 ∉ Π for some 𝜖 > 0. Therefore, 𝑥 ′ ∈ 𝐴 · 𝐵. The second property has been shown.

If exactly one of 𝐴 and 𝐵 is non-positive, then by definition 𝐴 · 𝐵 = − |(− |𝐴|) · (− |𝐵 |) |. Since − |𝐴| ≤ [0] and − |𝐵 | ≤ [0],
we conclude that (− |𝐴|) · (− |𝐵 |) ∈ D, and thus 𝐴· = − |(− |𝐴|) · (− |𝐵 |) | ∈ D since the additive inverse is closed in D.

If both are positive, then for similar reasons, we conclude 𝐴 · 𝐵 ∈ D. The proof is completed. □

Let’s show that this is compatible with rational multiplication.

Proof. Suppose 𝑥,𝑦 ∈ Q are both non-positive. Let Π = {𝑎𝑏 | 𝑎 ∈ [𝑥], 𝑏 ∈ [𝑦]}. Then, Π = {𝑎𝑏 | 𝑎 < 𝑥 < 0, 𝑏 < 𝑦 < 0} =

(𝑥𝑦, +∞)Q. Then, [𝑥] [𝑦] = {𝑡 ∈ Q | ∃𝜖 > 0, 𝑡 + 𝜖 ∉ Π} = {𝑡 ∈ Q | ∃𝜖 > 0, 𝑡 + 𝜖 ≤ 𝑥𝑦}. If 𝑡 < 𝑥𝑦, then let 𝜖 = (𝑥𝑦 − 𝑡)/2, and
we have 𝑡 + 𝜖 < 𝑥𝑦 ≤ 𝑥𝑦. If 𝑡 ≥ 𝑥𝑦, then for any 𝜖 > 0 we have 𝑡 + 𝜖 ≥ 𝑥𝑦 + 𝜖 > 𝑥𝑦, so 𝑡 ∉ [𝑥] [𝑦]. Thus, we conclude that
[𝑥] [𝑦] = [𝑥𝑦].
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Suppose exactly one of the two is positive. Without loss of generality, assume that 𝑥 ≤ 0 < 𝑦. Then, [𝑥] [𝑦] = −[−𝑥] [𝑦] =
−[−𝑥𝑦] = [𝑥𝑦].

Lastly, if both are positive, then [𝑥] [𝑦] = [−𝑥] [−𝑦] = [𝑥𝑦]. □

This is also clearly compatible with field axioms (M1) through (M4), stated without proof.

Now it is time to establish the multiplicative inverse.

Definition A.9. Let 𝐴 ∈ D be a non-zero Dedekind cut of Q. If 𝐴 is negative, then define

�̃� ≔ {1/𝑎 | 𝑎 ∈ 𝐴}.

Its multiplicative inverse is then defined as

𝐴−1 := {𝑥 ∈ Q− | ∃𝑥 ′ ∈ Q−, 𝑥
′ > 𝑥 ∧ 𝑥 ′ ∉ �̃�}.

If 𝐴 is positive, then its multiplicative inverse is defined as −(−𝐴)−1.

Let’s first show that 𝐴−1 is indeed a Dedekind cut.

Proof. Let 𝐴 ∈ D be a non-zero Dedekind cut of Q.

Suppose 𝐴 < [0]. Define �̃� ≔ {1/𝑎 | 𝑎 ∈ 𝐴}. Then, 𝐴−1 = {𝑥 ∈ Q− | ∃𝑥 ′ ∈ Q−, 𝑥 ′ > 𝑥 ∧ 𝑥 ′ ∉ �̃�}. Clearly, 𝐴−1 ≠ ∅ and
𝐴−1 ≠ Q.

We now demonstrate the first property of Dedekind cuts is satisfied. Choose arbitrary 𝑥 ∈ 𝐴−1 and 𝑥 ′ ∈ Q such that 𝑥 ′ < 𝑥 .
Fix 𝑥 ∈ Q− such that 𝑥 > 𝑥 and 𝑥 ∉ �̃�. Since 𝑥 ′ < 𝑥 < 𝑥 and 𝑥 ∉ �̃�, we conclude that 𝑥 ′ ∈ 𝐴−1 by definition.

Now we demonstrate the second property. Choose arbitrary 𝑥 ∈ 𝐴−1. Fix 𝑥 ∈ Q− such that 𝑥 > 𝑥 and 𝑥 ∉ �̃�. Let
𝑥 ′ = (𝑥 + 𝑥)/2. Then, 𝑥 < 𝑥 ′ < 𝑥 . Since 𝑥 ∉ �̃�, we conclude that 𝑥 ′ ∈ 𝐴−1 by definition.

If 𝐴 > [0], then 𝐴−1 is by definition −(−𝐴)−1. −𝐴 ∈ D since the additive inverse is closed. Then, (−𝐴)−1 ∈ D since the
reciprocal has been shown to be closed for negative Dedekind cuts. Applying the closedness of additive inverses again, we
conclude that 𝐴−1 = −(−𝐴)−1 ∈ D. The proof is finished. □

Now let’s prove that this is compatible with rational reciprocals.

Proof. Suppose 𝑥 ∈ Q is negative. Define �̃� ≔ {1/𝑎 | 𝑎 < 𝑥 < 0} = (1/𝑥, 0)Q. Then,

[𝑥]−1 = {𝑡 ∈ Q− | ∃𝑡 ′ ∈ Q−, 𝑡
′ > 𝑡 ∧ 𝑡 ′ ∉ �̃� }

= {𝑡 ∈ Q− | ∃𝑡 ′ ∈ Q−, 𝑡
′ > 𝑥 ∧ 𝑡 ′ ≤ 1/𝑥}

= {𝑡 ∈ Q− | 𝑡 < 1/𝑥}
= (−∞, 1/𝑥)Q
= [1/𝑥] .

Now suppose 𝑥 ∈ Q is positive. Then, [𝑥]−1 = −[−𝑥]−1 = −[1/(−𝑥)] = −[−1/𝑥] = [1/𝑥]. The proof is finished. □

And now we show that it satisfies axiom (M5); that is 𝐴 · 𝐴−1 = [1] for any non-zerp 𝐴 ∈ D. This is quite tricky: to find
𝐴 · 𝐴−1 we need to expand 𝐴−1, which involves �̃�, which is dependent on 𝐴. We have to cross this long bridge of logical
connectives to show that this is indeed the set [1].

Proof. Let 𝐴 ∈ D be non-zero.
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Suppose 𝐴 < [0]. Then, let �̃� ≔ {1/𝑎 | 𝑎 ∈ 𝐴}. So, 𝐴−1 = {𝑥 ∈ Q− | ∃𝑥 ′ ∈ Q−, 𝑥 ′ > 𝑥 ∧ 𝑥 ′ ∉ �̃�}. In order to show that
𝐴 · 𝐴−1 = [1], it suffices to show that Π := {𝑎𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐴−1} is equal to (1, +∞)Q.

Choose arbitrary 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐴−1. Then, there exists some 𝑏′ ∈ Q− with 𝑏′ > 𝑏 such that 𝑏′ ∉ �̃�. We first show that 𝑏′

must be a lower bound of �̃�. Since 𝑏′ ∉ �̃�, we have ∀𝑎′ ∈ 𝐴,𝑏′ ≠ 1/𝑎′. Suppose for the sake of contradiction that 𝑏′ > 1/𝑎′.
Then, 𝑎′ > 1/𝑏′, and thus 1/𝑏′ ∈ 𝐴 by the first property of Dedekind cuts. Consequently, 𝑏′ ∈ �̃� by definition, which is a
contradiction. Therefore, 𝑏 < 𝑏′ < 1/𝑎′ for any 𝑎′ ∈ 𝐴; that is, 𝑏 and 𝑏′ are both strict lower bounds of �̃�. Since 1/𝑎 ∈ �̃�, we
have 𝑏 < 1/𝑎. Since 𝑎 ∈ 𝐴 < [0], 𝑎 < 0, and thus 𝑎𝑏 > 1. Therefore, we conclude that Π ⊆ (1, +∞)Q.

Now we show that 𝑥 ∉ Π for any rational 𝑥 ≤ 1. Since 𝑎𝑏 > 1 ≥ 𝑥 for any 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴−1, we have 𝑎𝑏 > 𝑥 and thus 𝑎𝑏 ≠ 𝑥 .
Therefore, 𝑥 ∉ Π. We conclude that Π = (1, +∞)Q.

By definition, 𝐴 · 𝐵 = {𝑡 ∈ Q | ∃𝜖 > 0, 𝑡 + 𝜖 ∉ Π}. Suppose 𝑡 ∈ Q. We aim to show that 𝑡 < 1 if and only if ∃𝜖 > 0, 𝑡 + 𝜖 ≤ 1.
If 𝑡 < 1, then let 𝜖 = (1 − 𝑡)/2, so 𝑡 + 𝜖 = (𝑡 + 1)/2 ≤ 1. If 𝑡 ≥ 1, then for any 𝜖 > 0 we have 𝑡 + 𝜖 > 𝑡 ≥ 1, so 𝑡 + 𝜖 > 1.
Therefore, we conclude that𝐴 ·𝐵 = [1]. By similar reasoning, if𝐴 > [0] and 𝐵 B 𝐴−1,𝐴 ·𝐵 = [1]. The proof is finished. □

Now we have obtained both the ordering on D and the four arithmetic operations on D, which makes D an ordered
field.

Theorem A.10. The set of all Dedekind cuts in Q, D, is an ordered field.

Before we introduce powers, we should first prove that it is complete. There are many equivalent formulations of complete-
ness:

• Any bounded subset of D has a supremum;

• Any Cauchy sequence in D converges in D;

• There is some element of D contained in any term of any sequence of nested intervals in D.

Of particular interest to us are the first two. We will demonstrate the first here.

Theorem A.11. Let D be the set of all Dedekind cuts in Q. Suppose 𝑆 ⊂ D is bounded from above. Then it admits the least
upper bound.

Proof. Consider the union of all the Dedekind cuts in 𝑆 :

𝑆 ≔
⋃
𝐴∈𝑆

𝐴.

We claim that 𝑆 is a Dedekind cut. Clearly, 𝑆 ≠ ∅.

We first show that 𝑆 ≠ Q. Since 𝑆 is bounded from above, we may choose an arbitrary upper bound 𝐵 ∈ D. Then,
∀𝐴 ∈ 𝑆,𝐴 ⊆ 𝐵. Therefore, the union 𝑆 ⊆ 𝐵. Since 𝐵 ≠ Q, we conclude that 𝑆 ≠ Q.

Now we demonstrate that the first property of Dedekind cuts are satisfied. Choose arbitrary 𝑠 ∈ 𝑆 and 𝑠′ ∈ Q such that
𝑠′ < 𝑠 . Then, there exists some 𝐴 ∈ 𝑆 such that 𝑠 ∈ 𝐴. Since 𝑠′ < 𝑠 , we conclude that 𝑠′ ∈ 𝐴, so 𝑠′ ∈ 𝑆 .

We now show that the second property also holds. Choose arbitrary 𝑠 ∈ 𝑆 . Then, there exists some 𝐴 ∈ 𝑆 such that 𝑠 ∈ 𝐴.
Applying the second property of Dedekind cuts to 𝐴, we may choose some 𝑠′ ∈ 𝐴 such that 𝑠′ > 𝑠 . Since 𝑠′ ∈ 𝐴, we have
𝑠′ ∈ 𝑆 . Therefore, there exists some 𝑠′ ∈ 𝑆 such that 𝑠′ > 𝑠 for any 𝑠 ∈ 𝑆 . We conclude that 𝑆 is indeed a Dedekind cut of Q.

We now assert that 𝑆 is the least upper bound of 𝑆 . First, 𝑆 is an upper bound since for any 𝐴 ∈ 𝑆 , 𝐴 ⊆ ⋃
𝐴′∈𝑆 𝐴

′ = 𝑆 ,
so 𝐴 ≤ 𝑆 . Further, suppose 𝐵 ∈ D is also an upper bound of 𝑆 ; that is, ∀𝐴 ∈ 𝑆, 𝐵 ≥ 𝐴. So, 𝐴 ⊆ 𝐵 for any 𝐴 ∈ 𝑆 , so
𝑆 =

⋃
𝐴∈𝑆 𝐴 ⊆ 𝐵. Therefore, 𝑆 ≤ 𝐵 for any upper bound 𝐵 ∈ D of 𝑆 . The proof is finished. □

The construction of real numbers is now finished. We make a new set R that uniquely corresponds to elements in D. For
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any 𝑥 ∈ Q, we let 𝑥 ∈ R correspond to [𝑥] ∈ D. We inherit the ordering and the field operations from D and, of course,
the completeness.

Before we finish, allow me to give an elegant proof of the Archimedean property of real numbers.

Theorem A.12. For any 𝑥,𝑦 ∈ R with 𝑥 > 0, there exists some 𝑛 ∈ N such that 𝑛𝑥 > 𝑦.

Proof. Suppose 𝑥,𝑦 ∈ R with 𝑥 > 0. Suppose on the contrary that for any 𝑛 ∈ N, 𝑛𝑥 ≤ 𝑦. Let 𝑆 ≔ {𝑛𝑥 | 𝑛 ∈ N}. Then, 𝑦 is
an upper bound of 𝑆 . By the least upper bound property of real numbers (Theorem A.11), there exists some 𝑏 = sup 𝑆 . For
any 𝑛 ∈ N, (𝑛 + 1) ∈ N, so (𝑛 + 1)𝑥 ≤ 𝑏. This is equivalent to ∀𝑛 ∈ N, 𝑛𝑥 ≤ 𝑏 − 𝑥 ; that is, (𝑏 − 𝑥) is also an upper bound of
𝑆 . However, 𝑏 − 𝑥 < 𝑏 since 𝑥 > 0, which contradicts the fact that 𝑏 is the least upper bound. The proof is finished. □
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